import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import torch import gym import numpy as np import datetime from TD3.agent import TD3 from common.plot import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time class TD3Config: def __init__(self) -> None: self.algo = 'TD3' self.env = 'Pendulum-v0' self.seed = 0 self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models self.start_timestep = 25e3 # Time steps initial random policy is used self.start_ep = 50 # Episodes initial random policy is used self.eval_freq = 10 # How often (episodes) we evaluate self.train_eps = 600 self.max_timestep = 100000 # Max time steps to run environment self.expl_noise = 0.1 # Std of Gaussian exploration noise self.batch_size = 256 # Batch size for both actor and critic self.gamma = 0.9 # gamma factor self.lr = 0.0005 # Target network update rate self.policy_noise = 0.2 # Noise added to target policy during critic update self.noise_clip = 0.3 # Range to clip target policy noise self.policy_freq = 2 # Frequency of delayed policy updates self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Runs policy for X episodes and returns average reward # A fixed seed is used for the eval environment def eval(env,agent, seed, eval_episodes=10): eval_env = gym.make(env) eval_env.seed(seed + 100) avg_reward = 0. for _ in range(eval_episodes): state, done = eval_env.reset(), False while not done: # eval_env.render() action = agent.choose_action(np.array(state)) state, reward, done, _ = eval_env.step(action) avg_reward += reward avg_reward /= eval_episodes print("---------------------------------------") print(f"Evaluation over {eval_episodes} episodes: {avg_reward:.3f}") print("---------------------------------------") return avg_reward def train(cfg,env,agent): rewards = [] ma_rewards = [] # moveing average reward for i_ep in range(int(cfg.train_eps)): ep_reward = 0 ep_timesteps = 0 state, done = env.reset(), False while not done: ep_timesteps += 1 # Select action randomly or according to policy if i_ep < cfg.start_ep: action = env.action_space.sample() else: action = ( agent.choose_action(np.array(state)) + np.random.normal(0, max_action * cfg.expl_noise, size=action_dim) ).clip(-max_action, max_action) # Perform action next_state, reward, done, _ = env.step(action) done_bool = float(done) if ep_timesteps < env._max_episode_steps else 0 # Store data in replay buffer agent.memory.push(state, action, next_state, reward, done_bool) state = next_state ep_reward += reward # Train agent after collecting sufficient data if i_ep+1 >= cfg.start_ep: agent.update() print(f"Episode:{i_ep+1}/{cfg.train_eps}, Step:{ep_timesteps}, Reward:{ep_reward:.3f}") rewards.append(ep_reward) # 计算滑动窗口的reward if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) return rewards, ma_rewards if __name__ == "__main__": cfg = TD3Config() env = gym.make(cfg.env) env.seed(cfg.seed) # Set seeds torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] max_action = float(env.action_space.high[0]) agent = TD3(state_dim,action_dim,max_action,cfg) rewards,ma_rewards = train(cfg,env,agent) make_dir(cfg.result_path,cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)