def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 steps = 0 for i_ep in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) steps += 1 ep_reward += reward agent.memory.push(state, action, prob, val, reward, done) if steps % cfg.update_fre == 0: agent.update() state = state_ rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) if (i_ep+1)%10 == 0: print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}") print('完成训练!') return rewards,ma_rewards def eval(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.eval_eps): state = env.reset() done = False ep_reward = 0 while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) ep_reward += reward state = state_ rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.eval_eps, ep_reward)) print('完成训练!') return rewards,ma_rewards if __name__ == '__main__': import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime from common.plot import plot_rewards from common.utils import save_results,make_dir from PPO.agent import PPO from PPO.train import train curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class PPOConfig: def __init__(self) -> None: self.algo = "DQN" # 算法名称 self.env_name = 'CartPole-v0' # 环境名称 self.continuous = False # 环境是否为连续动作 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.train_eps = 200 # 训练的回合数 self.eval_eps = 20 # 测试的回合数 self.batch_size = 5 self.gamma=0.99 self.n_epochs = 4 self.actor_lr = 0.0003 self.critic_lr = 0.0003 self.gae_lambda=0.95 self.policy_clip=0.2 self.hidden_dim = 256 self.update_fre = 20 # frequency of agent update class PlotConfig: def __init__(self) -> None: self.algo = "DQN" # 算法名称 self.env_name = 'CartPole-v0' # 环境名称 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.result_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/results/' # 保存结果的路径 self.model_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/models/' # 保存模型的路径 self.save = True # 是否保存图片 def env_agent_config(cfg,seed=1): env = gym.make(cfg.env_name) env.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = PPO(state_dim,action_dim,cfg) return env,agent cfg = PPOConfig() plot_cfg = PlotConfig() # 训练 env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=plot_cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 测试 env,agent = env_agent_config(cfg,seed=10) agent.load(path=plot_cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path) plot_rewards(rewards,ma_rewards,plot_cfg,tag="eval")