#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John LastEditTime: 2021-09-15 15:34:13 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime from common.utils import save_results, make_dir from common.plot import plot_rewards from DQN.agent import DQN curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class DQNConfig: def __init__(self): self.algo = "DQN" # 算法名称 self.env_name = 'CartPole-v0' # 环境名称 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.train_eps = 200 # 训练的回合数 self.eval_eps = 30 # 测试的回合数 # 超参数 self.gamma = 0.95 # 强化学习中的折扣因子 self.epsilon_start = 0.90 # e-greedy策略中初始epsilon self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率 self.lr = 0.0001 # 学习率 self.memory_capacity = 100000 # 经验回放的容量 self.batch_size = 64 # mini-batch SGD中的批量大小 self.target_update = 4 # 目标网络的更新频率 self.hidden_dim = 256 # 网络隐藏层 class PlotConfig: def __init__(self) -> None: self.algo = "DQN" # 算法名称 self.env_name = 'CartPole-v0' # 环境名称 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.result_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/results/' # 保存结果的路径 self.model_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/models/' # 保存模型的路径 self.save = True # 是否保存图片 def env_agent_config(cfg,seed=1): ''' 创建环境和智能体 ''' env = gym.make(cfg.env_name) # 创建环境 env.seed(seed) # 设置随机种子 n_states = env.observation_space.shape[0] # 状态数 n_actions = env.action_space.n # 动作数 agent = DQN(n_states,n_actions,cfg) # 创建智能体 return env,agent def train(cfg, env, agent): ''' 训练 ''' print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录一回合内的奖励 state = env.reset() # 重置环境,返回初始状态 while True: action = agent.choose_action(state) # 选择动作 next_state, reward, done, _ = env.step(action) # 更新环境,返回transition agent.memory.push(state, action, reward, next_state, done) # 保存transition state = next_state # 更新下一个状态 agent.update() # 更新智能体 ep_reward += reward # 累加奖励 if done: break if (i_ep+1) % cfg.target_update == 0: # 智能体目标网络更新 agent.target_net.load_state_dict(agent.policy_net.state_dict()) if (i_ep+1)%10 == 0: print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('完成训练!') return rewards, ma_rewards def eval(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo}, 设备:{cfg.device}') # 由于测试不需要使用epsilon-greedy策略,所以相应的值设置为0 cfg.epsilon_start = 0.0 # e-greedy策略中初始epsilon cfg.epsilon_end = 0.0 # e-greedy策略中的终止epsilon rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.eval_eps): ep_reward = 0 # 记录一回合内的奖励 state = env.reset() # 重置环境,返回初始状态 while True: action = agent.choose_action(state) # 选择动作 next_state, reward, done, _ = env.step(action) # 更新环境,返回transition state = next_state # 更新下一个状态 ep_reward += reward # 累加奖励 if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print(f"回合:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}") print('完成测试!') return rewards,ma_rewards if __name__ == "__main__": cfg = DQNConfig() plot_cfg = PlotConfig() # 训练 env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=plot_cfg.model_path) # 保存模型 save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果 # 测试 env,agent = env_agent_config(cfg,seed=10) agent.load(path=plot_cfg.model_path) # 导入模型 rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=plot_cfg.result_path) # 保存结果 plot_rewards(rewards,ma_rewards, plot_cfg, tag="eval") # 画出结果