#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-29 10:37:32 LastEditor: John LastEditTime: 2021-05-04 22:35:56 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path = os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import datetime import numpy as np import torch import gym from common.utils import save_results,make_dir from common.plot import plot_rewards from HierarchicalDQN.agent import HierarchicalDQN curr_time = datetime.datetime.now().strftime( "%Y%m%d-%H%M%S") # obtain current time class HierarchicalDQNConfig: def __init__(self): self.algo = "H-DQN" # name of algo self.env = 'CartPole-v0' self.result_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/models/' # path to save models self.train_eps = 300 # 训练的episode数目 self.eval_eps = 50 # 测试的episode数目 self.gamma = 0.99 self.epsilon_start = 1 # start epsilon of e-greedy policy self.epsilon_end = 0.01 self.epsilon_decay = 200 self.lr = 0.0001 # learning rate self.memory_capacity = 10000 # Replay Memory capacity self.batch_size = 32 self.target_update = 2 # target net的更新频率 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 检测gpu self.hidden_dim = 256 # dimension of hidden layer def env_agent_config(cfg,seed=1): env = gym.make(cfg.env) env.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = HierarchicalDQN(state_dim,action_dim,cfg) return env,agent def train(cfg, env, agent): print('Start to train !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] ma_rewards = [] # moveing average reward for i_ep in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while not done: goal = agent.set_goal(state) onehot_goal = agent.to_onehot(goal) meta_state = state extrinsic_reward = 0 while not done and goal != np.argmax(state): goal_state = np.concatenate([state, onehot_goal]) action = agent.choose_action(goal_state) next_state, reward, done, _ = env.step(action) ep_reward += reward extrinsic_reward += reward intrinsic_reward = 1.0 if goal == np.argmax( next_state) else 0.0 agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate( [next_state, onehot_goal]), done) state = next_state agent.update() agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done) print('Episode:{}/{}, Reward:{}, Loss:{:.2f}, Meta_Loss:{:.2f}'.format(i_ep+1, cfg.train_eps, ep_reward,agent.loss_numpy ,agent.meta_loss_numpy )) rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards, ma_rewards def eval(cfg, env, agent): print('Start to eval !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards = [] ma_rewards = [] # moveing average reward for i_ep in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while not done: goal = agent.set_goal(state) onehot_goal = agent.to_onehot(goal) extrinsic_reward = 0 while not done and goal != np.argmax(state): goal_state = np.concatenate([state, onehot_goal]) action = agent.choose_action(goal_state) next_state, reward, done, _ = env.step(action) ep_reward += reward extrinsic_reward += reward state = next_state agent.update() print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward}, Loss:{agent.loss_numpy:.2f}, Meta_Loss:{agent.meta_loss_numpy:.2f}') rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards, ma_rewards if __name__ == "__main__": cfg = HierarchicalDQNConfig() # train env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) # eval env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)