#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2022-08-24 10:31:04 Discription: use defaultdict to define Q table Environment: ''' import numpy as np import math import torch from collections import defaultdict class QLearning(object): def __init__(self,cfg): self.n_actions = cfg['n_actions'] self.lr = cfg['lr'] self.gamma = cfg['gamma'] self.epsilon = cfg['epsilon_start'] self.sample_count = 0 self.epsilon_start = cfg['epsilon_start'] self.epsilon_end = cfg['epsilon_end'] self.epsilon_decay = cfg['epsilon_decay'] self.Q_table = defaultdict(lambda: np.zeros(self.n_actions)) # use nested dictionary to represent Q(s,a), here set all Q(s,a)=0 initially, not like pseudo code def sample_action(self, state): ''' sample action with e-greedy policy while training ''' self.sample_count += 1 # epsilon must decay(linear,exponential and etc.) for balancing exploration and exploitation self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.sample_count / self.epsilon_decay) if np.random.uniform(0, 1) > self.epsilon: action = np.argmax(self.Q_table[str(state)]) # choose action corresponding to the maximum q value else: action = np.random.choice(self.n_actions) # choose action randomly return action def predict_action(self,state): ''' predict action while testing ''' action = np.argmax(self.Q_table[str(state)]) return action def update(self, state, action, reward, next_state, done): Q_predict = self.Q_table[str(state)][action] if done: # terminal state Q_target = reward else: Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)]) self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict) def save_model(self,path): import dill from pathlib import Path # create path Path(path).mkdir(parents=True, exist_ok=True) torch.save( obj=self.Q_table, f=path+"Qleaning_model.pkl", pickle_module=dill ) print("Model saved!") def load_model(self, path): import dill self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill) print("Mode loaded!")