#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:21:53 LastEditor: John LastEditTime: 2022-08-22 17:40:07 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add to system path import gym import torch import datetime import argparse from itertools import count import torch.nn.functional as F from pg import PolicyGradient from common.utils import save_results, make_dir,all_seed,save_args,plot_rewards from common.models import MLP from common.memories import PGReplay def get_args(): """ Hyperparameters """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") parser.add_argument('--lr',default=0.005,type=float,help="learning rate") parser.add_argument('--update_fre',default=8,type=int) parser.add_argument('--hidden_dim',default=36,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--seed',default=1,type=int,help="seed") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # path to save models parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not") args = parser.parse_args([]) return args class PGNet(MLP): ''' instead of outputing action, PG Net outputs propabilities of actions, we can use class inheritance from MLP here ''' def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.sigmoid(self.fc3(x)) return x def env_agent_config(cfg): env = gym.make(cfg.env_name) if cfg.seed !=0: # set random seed all_seed(env,seed=cfg.seed) n_states = env.observation_space.shape[0] n_actions = env.action_space.n # action dimension print(f"state dim: {n_states}, action dim: {n_actions}") model = PGNet(n_states,1,hidden_dim=cfg.hidden_dim) memory = PGReplay() agent = PolicyGradient(n_states,model,memory,cfg) return env,agent def train(cfg,env,agent): print('Start training!') print(f'Env:{cfg.env_name}, Algo:{cfg.algo_name}, Device:{cfg.device}') rewards = [] for i_ep in range(cfg.train_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.sample_action(state) # sample action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 agent.memory.push((state,float(action),reward)) state = next_state if done: print(f'Episode:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}') break if (i_ep+1) % cfg.update_fre == 0: agent.update() rewards.append(ep_reward) print('Finish training!') env.close() # close environment res_dic = {'episodes':range(len(rewards)),'rewards':rewards} return res_dic def test(cfg,env,agent): print("start testing!") print(f"Env: {cfg.env_name}, Algo: {cfg.algo_name}, Device: {cfg.device}") rewards = [] for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.predict_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state = next_state if done: print(f'Episode: {i_ep+1}/{cfg.test_eps},Reward: {ep_reward:.2f}') break rewards.append(ep_reward) print("finish testing!") env.close() return {'episodes':range(len(rewards)),'rewards':rewards} if __name__ == "__main__": cfg = get_args() env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) save_args(cfg,path = cfg.result_path) # save parameters agent.save_model(path = cfg.model_path) # save models save_results(res_dic, tag = 'train', path = cfg.result_path) # save results plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "train") # plot results # testing env, agent = env_agent_config(cfg) # create new env for testing, sometimes can ignore this step agent.load_model(path = cfg.model_path) # load model res_dic = test(cfg, env, agent) save_results(res_dic, tag='test', path = cfg.result_path) plot_rewards(res_dic['rewards'], cfg, path = cfg.result_path,tag = "test")