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Motivation (Why):
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Main Idea (What):
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Ogr(s,m) = Z m(a|s)[r(s,a) +vO(s', )], where s = f(s,a) . (1)
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H(s, ) = Zw(a | s) [~logm(a|s)+~H (s',7)].
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Ognt(8,T) = Zﬂ'(a | 5) [r(s,a) — Tlogm(a | 5) + yOpnr (8, 7)]
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V*(s) = Ognt (s, 7%) = TlogZexp {(r(s,a) +yV* (') /7}.

Q*(s,a) =r(s,a) +9V* (s') =7(s,a) + 'yTlogZ exp (Q* (s',a’) /7)
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Theorem 1. For 7 >0, the policy * that maximizes Ognr and state values V* (s) =maxrOpnr(s, T)
satisfy the following temporal consistency property for any state s and action a (where s' = f(s,a)),

V*(s) —4V*(s") = r(s,a) —tlogn*(a|s). (11)
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Corollary 2. For 7 > 0, the optimal policy " and optimal state values V* satisfy the following
extended temporal consistency property, for any state s and any action sequence ay, ..., a;_1 (where

Siv1 = f(si,ai)):
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Theorem 3. If a policy w(a | s) and state value function V (s) satisfy the consistency property (11)
for all states s and actions a (where s' = f(s,a)), then m = 7* and V = V*. (See Appendix C.)



Main Contribution (How):
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Figure 1: The results of PCL against A3C and DQN baselines. Each plot shows average reward
across 5 random training runs (10 for Synthetic Tree) after choosing best hyperparameters. We also
show a single standard deviation bar clipped at the min and max. The x-axis is number of training
iterations. PCL exhibits comparable performance to A3C in some tasks, but clearly outperforms A3C
on the more challenging tasks. Across all tasks, the performance of DQN is worse than PCL.
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Figure 2: The results of PCL vs. Unified PCL. Overall we find that using a single model for both
values and policy is not detrimental to training. Although in some of the simpler tasks PCL has an
edge over Unified PCL, on the more difficult tasks, Unified PCL preforms better.
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Figure 3: The results of PCL vs. PCL augmented with a small number of expert trajectories on the
hardest algorithmic tasks. We find that incorporating expert trajectories greatly improves performance.
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