#!/usr/bin/env python # coding=utf-8 ''' Author: JiangJi Email: johnjim0816@gmail.com Date: 2021-04-23 20:36:23 LastEditor: JiangJi LastEditTime: 2021-04-23 20:37:22 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import torch import gym import numpy as np import datetime from TD3.agent import TD3 from common.plot import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time class TD3Config: def __init__(self) -> None: self.algo = 'TD3 and Random' self.env = 'HalfCheetah-v2' self.seed = 0 self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models self.start_timestep = 25e3 # Time steps initial random policy is used self.eval_freq = 5e3 # How often (time steps) we evaluate self.max_timestep = 200000 # Max time steps to run environment self.expl_noise = 0.1 # Std of Gaussian exploration noise self.batch_size = 256 # Batch size for both actor and critic self.gamma = 0.99 # gamma factor self.lr = 0.0005 # Target network update rate self.policy_noise = 0.2 # Noise added to target policy during critic update self.noise_clip = 0.5 # Range to clip target policy noise self.policy_freq = 2 # Frequency of delayed policy updates self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Runs policy for X episodes and returns average reward # A fixed seed is used for the eval environment def eval(env_name,agent, seed, eval_episodes=50): eval_env = gym.make(env_name) eval_env.seed(seed + 100) rewards,ma_rewards =[],[] for i_episode in range(eval_episodes): ep_reward = 0 state, done = eval_env.reset(), False while not done: eval_env.render() action = agent.choose_action(np.array(state)) state, reward, done, _ = eval_env.step(action) ep_reward += reward print(f"Episode:{i_episode+1}, Reward:{ep_reward:.3f}") rewards.append(ep_reward) # 计算滑动窗口的reward if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) return rewards,ma_rewards if __name__ == "__main__": cfg = TD3Config() env = gym.make(cfg.env) env.seed(cfg.seed) # Set seeds torch.manual_seed(cfg.seed) np.random.seed(cfg.seed) n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] max_action = float(env.action_space.high[0]) td3= TD3(n_states,n_actions,max_action,cfg) cfg.model_path = './TD3/results/HalfCheetah-v2/20210416-130341/models/' td3.load(cfg.model_path) td3_rewards,td3_ma_rewards = eval(cfg.env,td3,cfg.seed) make_dir(cfg.result_path,cfg.model_path) save_results(td3_rewards,td3_ma_rewards,tag='eval',path=cfg.result_path) plot_rewards({'td3_rewards':td3_rewards,'td3_ma_rewards':td3_ma_rewards,},tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path) # cfg.result_path = './TD3/results/HalfCheetah-v2/20210416-130341/' # agent.load(cfg.result_path) # eval(cfg.env,agent, cfg.seed)