#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-11 14:26:44 LastEditor: John LastEditTime: 2021-03-17 12:35:36 Discription: Environment: ''' import sys,os sys.path.append(os.getcwd()) import argparse import datetime from envs.racetrack_env import RacetrackEnv from MonteCarlo.agent import FisrtVisitMC from common.plot import plot_rewards from common.utils import save_results SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/") if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹 os.mkdir(SAVED_MODEL_PATH) RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/") if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹 os.mkdir(RESULT_PATH) class MCConfig: def __init__(self): self.epsilon = 0.15 # epsilon: The probability to select a random action . self.gamma = 0.9 # gamma: Gamma discount factor. self.n_episodes = 150 self.n_steps = 2000 def get_mc_args(): '''set parameters ''' parser = argparse.ArgumentParser() parser.add_argument("--epsilon", default=0.15, type=float) # epsilon: The probability to select a random action . float between 0 and 1. parser.add_argument("--gamma", default=0.9, type=float) # gamma: Gamma discount factor. parser.add_argument("--n_episodes", default=150, type=int) parser.add_argument("--n_steps", default=2000, type=int) mc_cfg = parser.parse_args() return mc_cfg def mc_train(cfg,env,agent): rewards = [] ma_rewards = [] # moving average rewards for i_episode in range(cfg.n_episodes): one_ep_transition = [] state = env.reset() ep_reward = 0 while True: # for t in range(cfg.n_steps): action = agent.choose_action(state) next_state, reward, done = env.step(action) ep_reward+=reward one_ep_transition.append((state, action, reward)) state = next_state if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) agent.update(one_ep_transition) if (i_episode+1)%10==0: print("Episode:{}/{}: Reward:{}".format(i_episode+1, mc_cfg.n_episodes,ep_reward)) return rewards,ma_rewards if __name__ == "__main__": mc_cfg = MCConfig() env = RacetrackEnv() n_actions=9 agent = FisrtVisitMC(n_actions,mc_cfg) rewards,ma_rewards= mc_train(mc_cfg,env,agent) save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) plot_rewards(rewards,ma_rewards,tag="train",algo = "On-Policy First-Visit MC Control",path=RESULT_PATH)