#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John LastEditTime: 2021-03-17 20:35:37 @Discription: @Environment: python 3.7.7 ''' import sys,os sys.path.append(os.getcwd()) # 添加当前终端路径 import gym import torch import datetime from DQN.agent import DQN from common.plot import plot_rewards from common.utils import save_results SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/") if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹 os.mkdir(SAVED_MODEL_PATH) RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径 if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹 os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/") if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹 os.mkdir(RESULT_PATH) class DQNConfig: def __init__(self): self.algo = "DQN" # 算法名称 self.gamma = 0.99 self.epsilon_start = 0.95 # e-greedy策略的初始epsilon self.epsilon_end = 0.01 self.epsilon_decay = 200 self.lr = 0.01 # 学习率 self.memory_capacity = 800 # Replay Memory容量 self.batch_size = 64 self.train_eps = 250 # 训练的episode数目 self.train_steps = 200 # 训练每个episode的最大长度 self.target_update = 2 # target net的更新频率 self.eval_eps = 20 # 测试的episode数目 self.eval_steps = 200 # 测试每个episode的最大长度 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu self.hidden_dim = 128 # 神经网络隐藏层维度 def train(cfg,env,agent): print('Start to train !') rewards = [] ma_rewards = [] # 滑动平均的reward ep_steps = [] for i_episode in range(cfg.train_eps): state = env.reset() # reset环境状态 ep_reward = 0 for i_step in range(cfg.train_steps): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) # 更新环境参数 ep_reward += reward agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory state = next_state # 跳转到下一个状态 agent.update() # 每步更新网络 if done: break # 更新target network,复制DQN中的所有weights and biases if i_episode % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) print('Episode:{}/{}, Reward:{}, Steps:{}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,i_step+1,done)) ep_steps.append(i_step) rewards.append(ep_reward) # 计算滑动窗口的reward if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards,ma_rewards if __name__ == "__main__": cfg = DQNConfig() env = gym.make('CartPole-v0').unwrapped # 可google为什么unwrapped gym,此处一般不需要 env.seed(1) # 设置env随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.n agent = DQN(n_states,n_actions,cfg) rewards,ma_rewards = train(cfg,env,agent) agent.save(path=SAVED_MODEL_PATH) save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)