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Figure 1. A distributional Bellman operator with a deterministic
reward function: (a) Next state distribution under policy 7, (b)
Discounting shrinks the distribution towards 0, (c¢) The reward
shifts it, and (d) Projection step (Section 4).
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Algorithm 1 Categorical Algorithm

input A transition z, as, 7, T441, Y € [0,1]
Q(zig1,0a) =, zipi(Tiy11,0)
a*  argmax, Q(z¢4+1,a)
m;i=0, 1€0,...,N—1
forj <0,..., N —1do

} }

# Compute the projection L)T'T.:-_}- onto the support { z; }
+ VM.‘\X
Tz < [re +mzly,

bj — (TZJ — VMIN)/AZ # b_,f. - |{] _\v — ]_|
# Distribute probability of 7 z;
my < my +p;(Tiq1,a")(u—by)
My <= My, +Pj($t—|—1; a'*)(bj - E)
end for
output — > m; logp;(xs,a;) # Cross-entropy loss
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Figure 3. Categorical DQN: Varying number of atoms in the discrete distribution. Scores are moving averages over 5 million frames.
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Figure 4. Learned value distribution during an episode of SPACE
INVADERS. Different actions are shaded different colours. Re-
turns below 0 (which do not occur in SPACE INVADERS) are not
shown here as the agent assigns virtually no probability to them.
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Figure 5. Intrinsic s

Mean | Median | > H.B. | > DQN
DQN 228% 79% 24 0
DDQN 307% 118% 33 43
DUEL. 373% 151% 37 50
PRIOR. 434% 124% 39 48
PR. DUEL. | 592% 172% 39 44
Cs51 701 % 178 % 40 50

UNREAL" | 880% | 250% | - | -

Figure 6. Mean and median scores across 57 Atari games, mea-
sured as percentages of human baseline (H.B., Nair et al., 2015).
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