#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John LastEditTime: 2021-09-15 02:19:54 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加父路径到系统路径sys.path import gym import torch import datetime from common.utils import save_results, make_dir from common.plot import plot_rewards from DQN.agent import DQN curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class DQNConfig: def __init__(self): self.algo = "DQN" # 算法名称 self.env = 'CartPole-v0' # 环境名称 self.result_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/outputs/" + self.env + \ '/'+curr_time+'/models/' # path to save models self.train_eps = 200 # 训练的回合数 self.eval_eps = 30 # 测试的回合数 self.gamma = 0.95 self.epsilon_start = 0.90 # e-greedy策略中初始epsilon self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon self.epsilon_decay = 500 # e-greedy策略中epsilon的衰减率 self.lr = 0.0001 # 学习率 self.memory_capacity = 100000 # capacity of Replay Memory self.batch_size = 64 self.target_update = 4 # 目标网络的更新频率 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # jian che self.hidden_dim = 256 # hidden size of net def env_agent_config(cfg,seed=1): env = gym.make(cfg.env) env.seed(seed) n_states = env.observation_space.shape[0] n_actions = env.action_space.n agent = DQN(n_states,n_actions,cfg) return env,agent def train(cfg, env, agent): print('Start to train !') print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}') rewards = [] ma_rewards = [] # moveing average reward for i_ep in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while True: action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) state = next_state agent.update() if done: break if (i_ep+1) % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) if (i_ep+1)%10 == 0: print('Episode:{}/{}, Reward:{}'.format(i_ep+1, cfg.train_eps, ep_reward)) rewards.append(ep_reward) # save ma_rewards if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards, ma_rewards def eval(cfg,env,agent): print('Start to eval !') print(f'Env: {cfg.env}, Algorithm: {cfg.algo}, Device: {cfg.device}') rewards = [] ma_rewards = [] # moving average rewards for i_ep in range(cfg.eval_eps): ep_reward = 0 # reward per episode state = env.reset() while True: action = agent.predict(state) next_state, reward, done, _ = env.step(action) state = next_state ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print(f"Episode:{i_ep+1}/{cfg.eval_eps}, reward:{ep_reward:.1f}") print('Complete evaling!') return rewards,ma_rewards if __name__ == "__main__": cfg = DQNConfig() # train env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) # eval env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)