#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-11 20:58:21 @LastEditor: John LastEditTime: 2021-04-29 01:58:50 @Discription: @Environment: python 3.7.7 ''' import sys,os from pathlib import Path import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import torch import gym import numpy as np import datetime from DDPG.agent import DDPG from DDPG.env import NormalizedActions,OUNoise from common.plot import plot_rewards from common.utils import save_results SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model if not os.path.exists(curr_path+"/saved_model/"): os.mkdir(curr_path+"/saved_model/") if not os.path.exists(SAVED_MODEL_PATH): os.mkdir(SAVED_MODEL_PATH) RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards if not os.path.exists(curr_path+"/results/"): os.mkdir(curr_path+"/results/") if not os.path.exists(RESULT_PATH): os.mkdir(RESULT_PATH) class DDPGConfig: def __init__(self): self.env = 'Pendulum-v0' self.algo = 'DDPG' self.gamma = 0.99 self.critic_lr = 1e-3 self.actor_lr = 1e-4 self.memory_capacity = 10000 self.batch_size = 128 self.train_eps =300 self.eval_eps = 200 self.eval_steps = 200 self.target_update = 4 self.hidden_dim = 30 self.soft_tau=1e-2 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def train(cfg,env,agent): print('Start to train ! ') ou_noise = OUNoise(env.action_space) # action noise rewards = [] ma_rewards = [] # moving average rewards ep_steps = [] for i_episode in range(cfg.train_eps): state = env.reset() ou_noise.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) action = ou_noise.get_action(action, i_step) # 即paper中的random process next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward)) ep_steps.append(i_step) rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards,ma_rewards if __name__ == "__main__": cfg = DDPGConfig() env = NormalizedActions(gym.make("Pendulum-v0")) env.seed(1) # 设置env随机种子 state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] agent = DDPG(state_dim,action_dim,cfg) rewards,ma_rewards = train(cfg,env,agent) agent.save(path=SAVED_MODEL_PATH) save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)