#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-10 15:28:30 @LastEditor: John LastEditTime: 2021-03-19 19:56:46 @Discription: @Environment: python 3.7.7 ''' import gym import numpy as np class NormalizedActions(gym.ActionWrapper): ''' 将action范围重定在[0.1]之间 ''' def action(self, action): low_bound = self.action_space.low upper_bound = self.action_space.high action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound) action = np.clip(action, low_bound, upper_bound) return action def reverse_action(self, action): low_bound = self.action_space.low upper_bound = self.action_space.high action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1 action = np.clip(action, low_bound, upper_bound) return action class OUNoise(object): '''Ornstein–Uhlenbeck ''' def __init__(self, action_space, mu=0.0, theta=0.15, max_sigma=0.3, min_sigma=0.3, decay_period=100000): self.mu = mu self.theta = theta self.sigma = max_sigma self.max_sigma = max_sigma self.min_sigma = min_sigma self.decay_period = decay_period self.action_dim = action_space.shape[0] self.low = action_space.low self.high = action_space.high self.reset() def reset(self): self.obs = np.ones(self.action_dim) * self.mu def evolve_obs(self): x = self.obs dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.action_dim) self.obs = x + dx return self.obs def get_action(self, action, t=0): ou_obs = self.evolve_obs() self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period) return np.clip(action + ou_obs, self.low, self.high)