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Figure 1. Comparison of stochastic actor-critic (SAC-B) and deterministic actor-critic (COPDAC-B) on the continuous bandit task.
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Figure 2. Comparison of stochastic on-policy actor-critic (SAC), stochastic off-policy actor-critic (OffPAC), and deterministic off-policy
actor-critic (COPDAC) on continuous-action reinforcement learning. Each point is the average test performance of the mean policy.
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Figure 3. Ten runs of COPDAC on a 6-segment octopus arm with
20 action dimensions and 50 state dimensions; each point repre-
sents the return per episode (above) and the number of time-steps
for the arm to reach the target (below).
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