#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-22 16:18:10 LastEditor: John LastEditTime: 2021-09-26 22:05:00 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import gym import torch import datetime import tqdm from PPO.agent import PPO from common.plot import plot_rewards from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time class PPOConfig: def __init__(self) -> None: self.env = 'CartPole-v0' self.algo = 'PPO' self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/results/' # path to save results self.model_path = curr_path+"/results/" +self.env+'/'+curr_time+'/models/' # path to save models self.train_eps = 200 # max training episodes self.eval_eps = 50 self.batch_size = 5 self.gamma=0.99 self.n_epochs = 4 self.actor_lr = 0.0003 self.critic_lr = 0.0003 self.gae_lambda=0.95 self.policy_clip=0.2 self.hidden_dim = 256 self.update_fre = 20 # frequency of agent update self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu def env_agent_config(cfg,seed=1): env = gym.make(cfg.env) env.seed(seed) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = PPO(state_dim,action_dim,cfg) return env,agent def train(cfg,env,agent): print('开始训练!') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards= [] ma_rewards = [] # moving average rewards running_steps = 0 for i_ep in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) running_steps += 1 ep_reward += reward agent.memory.push(state, action, prob, val, reward, done) if running_steps % cfg.update_fre == 0: agent.update() state = state_ rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}") print('Complete training!') return rewards,ma_rewards def eval(cfg,env,agent): print('Start to eval !') print(f'Env:{cfg.env}, Algorithm:{cfg.algo}, Device:{cfg.device}') rewards= [] ma_rewards = [] # moving average rewards for i_ep in range(cfg.eval_eps): state = env.reset() done = False ep_reward = 0 while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) ep_reward += reward state = state_ rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print(f"Episode:{i_ep+1}/{cfg.eval_eps}, Reward:{ep_reward:.3f}") print('Complete evaling!') return rewards,ma_rewards if __name__ == '__main__': cfg = PPOConfig() # train env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=cfg.result_path) # eval env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)