#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2021-12-22 11:13:23 Discription: Environment: ''' import sys import os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime from envs.gridworld_env import CliffWalkingWapper from QLearning.agent import QLearning from QLearning.train import train,test from common.utils import plot_rewards,plot_rewards_cn from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 algo_name = 'Q-learning' # 算法名称 env_name = 'CliffWalking-v0' # 环境名称 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU class QlearningConfig: '''训练相关参数''' def __init__(self): self.algo_name = algo_name # 算法名称 self.env_name = env_name # 环境名称 self.device = device # 检测GPU self.train_eps = 400 # 训练的回合数 self.test_eps = 30 # 测试的回合数 self.gamma = 0.9 # reward的衰减率 self.epsilon_start = 0.95 # e-greedy策略中初始epsilon self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon self.epsilon_decay = 300 # e-greedy策略中epsilon的衰减率 self.lr = 0.1 # 学习率 class PlotConfig: ''' 绘图相关参数设置 ''' def __init__(self) -> None: self.algo_name = algo_name # 算法名称 self.env_name = env_name # 环境名称 self.device = device # 检测GPU self.result_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/results/' # 保存结果的路径 self.model_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/models/' # 保存模型的路径 self.save = True # 是否保存图片 def env_agent_config(cfg,seed=1): '''创建环境和智能体 Args: cfg ([type]): [description] seed (int, optional): 随机种子. Defaults to 1. Returns: env [type]: 环境 agent : 智能体 ''' env = gym.make(cfg.env_name) env = CliffWalkingWapper(env) env.seed(seed) # 设置随机种子 n_states = env.observation_space.n # 状态维度 n_actions = env.action_space.n # 动作维度 agent = QLearning(n_states,n_actions,cfg) return env,agent cfg = QlearningConfig() plot_cfg = PlotConfig() # 训练 env, agent = env_agent_config(cfg, seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(plot_cfg.result_path, plot_cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=plot_cfg.model_path) # 保存模型 save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果 # 测试 env, agent = env_agent_config(cfg, seed=10) agent.load(path=plot_cfg.model_path) # 导入模型 rewards, ma_rewards = test(cfg, env, agent) save_results(rewards, ma_rewards, tag='test', path=plot_cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果