#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-11 20:58:21 @LastEditor: John LastEditTime: 2021-09-16 01:31:33 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径sys.path import datetime import gym import torch from DDPG.env import NormalizedActions from DDPG.agent import DDPG from DDPG.train import train,test from common.utils import save_results,make_dir from common.utils import plot_rewards curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 algo_name = 'DDPG' # 算法名称 env_name = 'Pendulum-v1' # 环境名称,gym新版本(约0.21.0之后)中Pendulum-v0改为Pendulum-v1 class DDPGConfig: def __init__(self): self.algo_name = algo_name # 算法名称 self.env_name = env_name # 环境名称 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU self.train_eps = 300 # 训练的回合数 self.eval_eps = 50 # 测试的回合数 self.gamma = 0.99 # 折扣因子 self.critic_lr = 1e-3 # 评论家网络的学习率 self.actor_lr = 1e-4 # 演员网络的学习率 self.memory_capacity = 8000 # 经验回放的容量 self.batch_size = 128 # mini-batch SGD中的批量大小 self.target_update = 2 # 目标网络的更新频率 self.hidden_dim = 256 # 网络隐藏层维度 self.soft_tau = 1e-2 # 软更新参数 class PlotConfig: def __init__(self) -> None: self.algo_name = algo_name # 算法名称 self.env_name = env_name # 环境名称 self.result_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/results/' # 保存结果的路径 self.model_path = curr_path+"/outputs/" + self.env_name + \ '/'+curr_time+'/models/' # 保存模型的路径 self.save = True # 是否保存图片 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU def env_agent_config(cfg,seed=1): env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声 env.seed(seed) # 随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] agent = DDPG(n_states,n_actions,cfg) return env,agent cfg = DDPGConfig() plot_cfg = PlotConfig() # 训练 env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(plot_cfg.result_path, plot_cfg.model_path) agent.save(path=plot_cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=plot_cfg.result_path) plot_rewards(rewards, ma_rewards, plot_cfg, tag="train") # 画出结果 # 测试 env,agent = env_agent_config(cfg,seed=10) agent.load(path=plot_cfg.model_path) rewards,ma_rewards = test(plot_cfg,env,agent) save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path) plot_rewards(rewards, ma_rewards, plot_cfg, tag="test") # 画出结果