#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2021-09-15 13:18:37 Discription: use defaultdict to define Q table Environment: ''' import numpy as np import math import torch from collections import defaultdict class QLearning(object): def __init__(self,state_dim, action_dim,cfg): self.action_dim = action_dim # dimension of acgtion self.lr = cfg.lr # learning rate self.gamma = cfg.gamma self.epsilon = 0 self.sample_count = 0 self.epsilon_start = cfg.epsilon_start self.epsilon_end = cfg.epsilon_end self.epsilon_decay = cfg.epsilon_decay self.Q_table = defaultdict(lambda: np.zeros(action_dim)) # A nested dictionary that maps state -> (action -> action-value) def choose_action(self, state): self.sample_count += 1 self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.sample_count / self.epsilon_decay) # epsilon是会递减的,这里选择指数递减 # e-greedy 策略 if np.random.uniform(0, 1) > self.epsilon: action = np.argmax(self.Q_table[str(state)]) # 选择Q(s,a)最大对应的动作 else: action = np.random.choice(self.action_dim) # 随机选择动作 return action def predict(self,state): action = np.argmax(self.Q_table[str(state)]) return action def update(self, state, action, reward, next_state, done): Q_predict = self.Q_table[str(state)][action] if done: # 终止状态 Q_target = reward else: Q_target = reward + self.gamma * np.max(self.Q_table[str(next_state)]) self.Q_table[str(state)][action] += self.lr * (Q_target - Q_predict) def save(self,path): import dill torch.save( obj=self.Q_table, f=path+"Qleaning_model.pkl", pickle_module=dill ) print("保存模型成功!") def load(self, path): import dill self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill) print("加载模型成功!")