#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2021-09-20 00:32:59 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前路径 parent_path=os.path.dirname(curr_path) # 父路径,这里就是我们的项目路径 sys.path.append(parent_path) # 由于需要引用项目路径下的其他模块比如envs,所以需要添加路径到sys.path import gym import torch import datetime from envs.gridworld_env import CliffWalkingWapper from QLearning.agent import QLearning from common.plot import plot_rewards,plot_rewards_cn from common.utils import save_results,make_dir curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class QlearningConfig: '''训练相关参数''' def __init__(self): self.algo = 'Q-learning' # 算法名称 self.env = 'CliffWalking-v0' # 环境名称 self.result_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/results/' # 保存结果的路径 self.model_path = curr_path+"/outputs/" +self.env+'/'+curr_time+'/models/' # 保存模型的路径 self.train_eps = 400 # 训练的回合数 self.eval_eps = 30 # 测试的回合数 self.gamma = 0.9 # reward的衰减率 self.epsilon_start = 0.99 # e-greedy策略中初始epsilon self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon self.epsilon_decay = 300 # e-greedy策略中epsilon的衰减率 self.lr = 0.1 # 学习率 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测GPU def env_agent_config(cfg,seed=1): env = gym.make(cfg.env) env = CliffWalkingWapper(env) env.seed(seed) # 设置随机种子 n_states = env.observation_space.n # 状态维度 n_actions = env.action_space.n # 动作维度 agent = QLearning(n_states,n_actions,cfg) return env,agent def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}') rewards = [] ma_rewards = [] # 滑动平均奖励 for i_ep in range(cfg.train_eps): ep_reward = 0 # 记录每个回合的奖励 state = env.reset() # 重置环境,即开始新的回合 while True: action = agent.choose_action(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互 agent.update(state, action, reward, next_state, done) # Q学习算法更新 state = next_state # 更新状态 ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print("回合数:{}/{},奖励{:.1f}".format(i_ep+1, cfg.train_eps,ep_reward)) print('完成训练!') return rewards,ma_rewards def eval(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 滑动平均的奖励 for i_ep in range(cfg.eval_eps): ep_reward = 0 # 记录每个episode的reward state = env.reset() # 重置环境, 重新开一局(即开始新的一个回合) while True: action = agent.predict(state) # 根据算法选择一个动作 next_state, reward, done, _ = env.step(action) # 与环境进行一个交互 state = next_state # 存储上一个观察值 ep_reward += reward if done: break rewards.append(ep_reward) if ma_rewards: ma_rewards.append(ma_rewards[-1]*0.9+ep_reward*0.1) else: ma_rewards.append(ep_reward) print(f"回合数:{i_ep+1}/{cfg.eval_eps}, 奖励:{ep_reward:.1f}") print('完成测试!') return rewards,ma_rewards if __name__ == "__main__": cfg = QlearningConfig() # 训练 env,agent = env_agent_config(cfg,seed=1) rewards,ma_rewards = train(cfg,env,agent) make_dir(cfg.result_path,cfg.model_path) # 创建文件夹 agent.save(path=cfg.model_path) # 保存模型 save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) # 保存结果 plot_rewards_cn(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path) # # 测试 env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) # 加载模型 rewards,ma_rewards = eval(cfg,env,agent) save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path) plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)