#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:50:49 @LastEditor: John LastEditTime: 2022-08-29 23:34:20 @Discription: @Environment: python 3.7.7 ''' '''off-policy ''' import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import random import math import numpy as np class DoubleDQN: def __init__(self,models, memories, cfg): self.n_actions = cfg['n_actions'] self.device = torch.device(cfg['device']) self.gamma = cfg['gamma'] ## e-greedy parameters self.sample_count = 0 # sample count for epsilon decay self.epsilon_start = cfg['epsilon_start'] self.epsilon_end = cfg['epsilon_end'] self.epsilon_decay = cfg['epsilon_decay'] self.batch_size = cfg['batch_size'] self.policy_net = models['Qnet'].to(self.device) self.target_net = models['Qnet'].to(self.device) # target_net copy from policy_net for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): target_param.data.copy_(param.data) # self.target_net.eval() # donnot use BatchNormalization or Dropout # the difference between parameters() and state_dict() is that parameters() require_grad=True self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg['lr']) self.memory = memories['Memory'] self.update_flag = False def sample_action(self, state): ''' sample action ''' self.sample_count += 1 self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * math.exp(-1. * self.sample_count / self.epsilon_decay) if random.random() > self.epsilon: with torch.no_grad(): state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0) q_value = self.policy_net(state) action = q_value.max(1)[1].item() else: action = random.randrange(self.n_actions) return action def predict_action(self, state): ''' predict action ''' with torch.no_grad(): state = torch.tensor(state, device=self.device, dtype=torch.float32).unsqueeze(0) q_value = self.policy_net(state) action = q_value.max(1)[1].item() return action def update(self): if len(self.memory) < self.batch_size: # when transitions in memory donot meet a batch, not update return else: if not self.update_flag: print("Begin to update!") self.update_flag = True # sample a batch of transitions from replay buffer state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size) # convert to tensor state_batch = torch.tensor(np.array(state_batch), device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze(1) # shape(batchsize,1) reward_batch = torch.tensor(reward_batch, device=self.device, dtype=torch.float).unsqueeze(1) # shape(batchsize,1) next_state_batch = torch.tensor(np.array(next_state_batch), device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32(done_batch), device=self.device).unsqueeze(1) # shape(batchsize,1) # compute current Q(s_t|a=a_t) q_value_batch = self.policy_net(state_batch).gather(dim=1, index=action_batch) # shape(batchsize,1),requires_grad=True next_q_value_batch = self.policy_net(next_state_batch) '''the following is the way of computing Double DQN expected_q_value,a bit different from Nature DQN''' next_target_value_batch = self.target_net(next_state_batch) # choose action a from Q(s_t‘, a), next_target_values obtain next_q_value,which is Q’(s_t|a=argmax Q(s_t‘, a)) next_target_q_value_batch = next_target_value_batch.gather(1, torch.max(next_q_value_batch, 1)[1].unsqueeze(1)) # shape(batchsize,1) expected_q_value_batch = reward_batch + self.gamma * next_target_q_value_batch * (1-done_batch) loss = nn.MSELoss()(q_value_batch , expected_q_value_batch) self.optimizer.zero_grad() loss.backward() # clip to avoid gradient explosion for param in self.policy_net.parameters(): param.grad.data.clamp_(-1, 1) self.optimizer.step() def save_model(self,path): from pathlib import Path # create path Path(path).mkdir(parents=True, exist_ok=True) torch.save(self.target_net.state_dict(), path+'checkpoint.pth') def load_model(self,path): self.target_net.load_state_dict(torch.load(path+'checkpoint.pth')) for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): param.data.copy_(target_param.data)