#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-09-11 23:03:00 LastEditor: John LastEditTime: 2021-03-12 16:48:25 Discription: Environment: ''' import numpy as np import math import torch from collections import defaultdict class QLearning(object): def __init__(self, n_actions,cfg): self.n_actions = n_actions # number of actions self.lr = cfg.lr # learning rate self.gamma = cfg.gamma self.epsilon = 0 self.sample_count = 0 # epsilon随训练的也就是采样次数逐渐衰减,所以需要计数 self.epsilon_start = cfg.epsilon_start self.epsilon_end = cfg.epsilon_end self.epsilon_decay = cfg.epsilon_decay self.Q_table = defaultdict(lambda: np.zeros(n_actions)) # 使用字典存储Q表,个人比较喜欢这种,也可以用下面一行的二维数组表示,但是需要额外更改代码 # self.Q_table = np.zeros((n_states, n_actions)) # Q表 def choose_action(self, state): self.sample_count += 1 self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.sample_count / self.epsilon_decay) # 随机选取0-1之间的值,如果大于epsilon就按照贪心策略选取action,否则随机选取 if np.random.uniform(0, 1) > self.epsilon: action = np.argmax(self.Q_table[state]) else: action = np.random.choice(self.n_actions) # 有一定概率随机探索选取一个动作 return action def update(self, state, action, reward, next_state, done): Q_predict = self.Q_table[state][action] if done: Q_target = reward # terminal state else: Q_target = reward + self.gamma * np.max( self.Q_table[next_state]) # Q_table-learning self.Q_table[state][action] += self.lr * (Q_target - Q_predict) def save(self,path): '''把 Q表格 的数据保存到文件中 ''' import dill torch.save( obj=self.Q_table, f=path+"Qleaning_model.pkl", pickle_module=dill ) def load(self, path): '''从文件中读取数据到 Q表格 ''' import dill self.Q_table =torch.load(f=path+'Qleaning_model.pkl',pickle_module=dill)