#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:50:49 @LastEditor: John LastEditTime: 2020-12-22 16:20:35 @Discription: @Environment: python 3.7.7 ''' '''off-policy ''' import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import random import math import numpy as np from memory import ReplayBuffer from model import FCN class DQN: def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01, batch_size=128, device="cpu"): self.actions_count = 0 self.n_actions = n_actions # 总的动作个数 self.device = device # 设备,cpu或gpu等 self.gamma = gamma # e-greedy策略相关参数 self.epsilon = 0 self.epsilon_start = epsilon_start self.epsilon_end = epsilon_end self.epsilon_decay = epsilon_decay self.batch_size = batch_size self.policy_net = FCN(n_states, n_actions).to(self.device) self.target_net = FCN(n_states, n_actions).to(self.device) # target_net的初始模型参数完全复制policy_net self.target_net.load_state_dict(self.policy_net.state_dict()) self.target_net.eval() # 不启用 BatchNormalization 和 Dropout # 可查parameters()与state_dict()的区别,前者require_grad=True self.optimizer = optim.Adam(self.policy_net.parameters(), lr=policy_lr) self.loss = 0 self.memory = ReplayBuffer(memory_capacity) def choose_action(self, state, train=True): '''选择动作 ''' if train: self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \ math.exp(-1. * self.actions_count / self.epsilon_decay) self.actions_count += 1 if random.random() > self.epsilon: with torch.no_grad(): # 先转为张量便于丢给神经网络,state元素数据原本为float64 # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 state = torch.tensor( [state], device=self.device, dtype=torch.float32) # 如tensor([[-0.0798, -0.0079]], grad_fn=) q_value = self.policy_net(state) # tensor.max(1)返回每行的最大值以及对应的下标, # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) # 所以tensor.max(1)[1]返回最大值对应的下标,即action action = q_value.max(1)[1].item() else: action = random.randrange(self.n_actions) return action else: with torch.no_grad(): # 先转为张量便于丢给神经网络,state元素数据原本为float64 # 注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价 state = torch.tensor( [state], device='cpu', dtype=torch.float32) # 如tensor([[-0.0798, -0.0079]], grad_fn=) q_value = self.target_net(state) # tensor.max(1)返回每行的最大值以及对应的下标, # 如torch.return_types.max(values=tensor([10.3587]),indices=tensor([0])) # 所以tensor.max(1)[1]返回最大值对应的下标,即action action = q_value.max(1)[1].item() return action def update(self): if len(self.memory) < self.batch_size: return # 从memory中随机采样transition state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) # 转为张量 # 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]]) state_batch = torch.tensor( state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze( 1) # 例如tensor([[1],...,[0]]) reward_batch = torch.tensor( reward_batch, device=self.device, dtype=torch.float) # tensor([1., 1.,...,1]) next_state_batch = torch.tensor( next_state_batch, device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32( done_batch), device=self.device).unsqueeze(1) # 将bool转为float然后转为张量 # 计算当前(s_t,a)对应的Q(s_t, a) q_values = self.policy_net(state_batch) next_q_values = self.policy_net(next_state_batch) # 代入当前选择的action,得到Q(s_t|a=a_t) q_value = q_values.gather(dim=1, index=action_batch) '''以下是Nature DQN的q_target计算方式 # 计算所有next states的Q'(s_{t+1})的最大值,Q'为目标网络的q函数 next_q_state_value = self.target_net( next_state_batch).max(1)[0].detach() # 比如tensor([ 0.0060, -0.0171,...,]) # 计算 q_target # 对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward q_target = reward_batch + self.gamma * next_q_state_value * (1-done_batch[0]) ''' '''以下是Double DQNq_target计算方式,与NatureDQN稍有不同''' next_target_values = self.target_net( next_state_batch) # 选出Q(s_t‘, a)对应的action,代入到next_target_values获得target net对应的next_q_value,即Q’(s_t|a=argmax Q(s_t‘, a)) next_target_q_value = next_target_values.gather(1, torch.max(next_q_values, 1)[1].unsqueeze(1)).squeeze(1) q_target = reward_batch + self.gamma * next_target_q_value * (1-done_batch[0]) self.loss = nn.MSELoss()(q_value, q_target.unsqueeze(1)) # 计算 均方误差loss # 优化模型 self.optimizer.zero_grad() # zero_grad清除上一步所有旧的gradients from the last step # loss.backward()使用backpropagation计算loss相对于所有parameters(需要gradients)的微分 self.loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() # 更新模型 def save_model(self,path): torch.save(self.target_net.state_dict(), path) def load_model(self,path): self.target_net.load_state_dict(torch.load(path))