import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import numpy as np import datetime import argparse from common.utils import plot_rewards,save_args,save_results,make_dir from ppo2 import PPO def get_args(): """ Hyperparameters """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='PPO',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--continuous',default=False,type=bool,help="if PPO is continous") # PPO既可适用于连续动作空间,也可以适用于离散动作空间 parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") parser.add_argument('--batch_size',default=5,type=int) # mini-batch SGD中的批量大小 parser.add_argument('--n_epochs',default=4,type=int) parser.add_argument('--actor_lr',default=0.0003,type=float,help="learning rate of actor net") parser.add_argument('--critic_lr',default=0.0003,type=float,help="learning rate of critic net") parser.add_argument('--gae_lambda',default=0.95,type=float) parser.add_argument('--policy_clip',default=0.2,type=float) # PPO-clip中的clip参数,一般是0.1~0.2左右 parser.add_argument('--update_fre',default=20,type=int) parser.add_argument('--hidden_dim',default=256,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # path to save models parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed = 1): ''' 创建环境和智能体 ''' env = gym.make(cfg.env_name) # 创建环境 n_states = env.observation_space.shape[0] # 状态维度 if cfg.continuous: n_actions = env.action_space.shape[0] # 动作维度 else: n_actions = env.action_space.n # 动作维度 agent = PPO(n_states, n_actions, cfg) # 创建智能体 if seed !=0: # 设置随机种子 torch.manual_seed(seed) env.seed(seed) np.random.seed(seed) return env, agent def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 steps = 0 for i_ep in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) steps += 1 ep_reward += reward agent.memory.push(state, action, prob, val, reward, done) if steps % cfg.update_fre == 0: agent.update() state = state_ rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) if (i_ep+1)%10 == 0: print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}") print('完成训练!') env.close() res_dic = {'rewards':rewards,'ma_rewards':ma_rewards} return res_dic def test(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.test_eps): state = env.reset() done = False ep_reward = 0 while not done: action, prob, val = agent.choose_action(state) state_, reward, done, _ = env.step(action) ep_reward += reward state = state_ rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.test_eps, ep_reward)) print('完成训练!') env.close() res_dic = {'rewards':rewards,'ma_rewards':ma_rewards} return res_dic if __name__ == "__main__": cfg = get_args() # 训练 env, agent = env_agent_config(cfg) res_dic = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) save_args(cfg) # 保存参数 agent.save(path=cfg.model_path) # save model save_results(res_dic, tag='train', path=cfg.result_path) plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train") # 测试 env, agent = env_agent_config(cfg) agent.load(path=cfg.model_path) # 导入模型 res_dic = test(cfg, env, agent) save_results(res_dic, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果