#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-23 15:17:42 LastEditor: John LastEditTime: 2021-12-31 19:38:33 Discription: Environment: ''' import os import numpy as np import torch import torch.optim as optim import torch.nn as nn from torch.distributions.categorical import Categorical class PPOMemory: def __init__(self, batch_size): self.states = [] self.probs = [] self.vals = [] self.actions = [] self.rewards = [] self.dones = [] self.batch_size = batch_size def sample(self): batch_step = np.arange(0, len(self.states), self.batch_size) indices = np.arange(len(self.states), dtype=np.int64) np.random.shuffle(indices) batches = [indices[i:i+self.batch_size] for i in batch_step] return np.array(self.states),np.array(self.actions),np.array(self.probs),\ np.array(self.vals),np.array(self.rewards),np.array(self.dones),batches def push(self, state, action, probs, vals, reward, done): self.states.append(state) self.actions.append(action) self.probs.append(probs) self.vals.append(vals) self.rewards.append(reward) self.dones.append(done) def clear(self): self.states = [] self.probs = [] self.actions = [] self.rewards = [] self.dones = [] self.vals = [] class Actor(nn.Module): def __init__(self,n_states, n_actions, hidden_dim): super(Actor, self).__init__() self.actor = nn.Sequential( nn.Linear(n_states, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, n_actions), nn.Softmax(dim=-1) ) def forward(self, state): dist = self.actor(state) dist = Categorical(dist) return dist class Critic(nn.Module): def __init__(self, n_states,hidden_dim): super(Critic, self).__init__() self.critic = nn.Sequential( nn.Linear(n_states, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, 1) ) def forward(self, state): value = self.critic(state) return value class PPO: def __init__(self, n_states, n_actions,cfg): self.gamma = cfg.gamma self.continuous = cfg.continuous self.policy_clip = cfg.policy_clip self.n_epochs = cfg.n_epochs self.gae_lambda = cfg.gae_lambda self.device = cfg.device self.actor = Actor(n_states, n_actions,cfg.hidden_dim).to(self.device) self.critic = Critic(n_states,cfg.hidden_dim).to(self.device) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr) self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr) self.memory = PPOMemory(cfg.batch_size) self.loss = 0 def choose_action(self, state): state = np.array([state]) # 先转成数组再转tensor更高效 state = torch.tensor(state, dtype=torch.float).to(self.device) dist = self.actor(state) value = self.critic(state) action = dist.sample() probs = torch.squeeze(dist.log_prob(action)).item() if self.continuous: action = torch.tanh(action) else: action = torch.squeeze(action).item() value = torch.squeeze(value).item() return action, probs, value def update(self): for _ in range(self.n_epochs): state_arr, action_arr, old_prob_arr, vals_arr,reward_arr, dones_arr, batches = self.memory.sample() values = vals_arr[:] ### compute advantage ### advantage = np.zeros(len(reward_arr), dtype=np.float32) for t in range(len(reward_arr)-1): discount = 1 a_t = 0 for k in range(t, len(reward_arr)-1): a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\ (1-int(dones_arr[k])) - values[k]) discount *= self.gamma*self.gae_lambda advantage[t] = a_t advantage = torch.tensor(advantage).to(self.device) ### SGD ### values = torch.tensor(values).to(self.device) for batch in batches: states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device) old_probs = torch.tensor(old_prob_arr[batch]).to(self.device) actions = torch.tensor(action_arr[batch]).to(self.device) dist = self.actor(states) critic_value = self.critic(states) critic_value = torch.squeeze(critic_value) new_probs = dist.log_prob(actions) prob_ratio = new_probs.exp() / old_probs.exp() weighted_probs = advantage[batch] * prob_ratio weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip, 1+self.policy_clip)*advantage[batch] actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean() returns = advantage[batch] + values[batch] critic_loss = (returns-critic_value)**2 critic_loss = critic_loss.mean() total_loss = actor_loss + 0.5*critic_loss self.loss = total_loss self.actor_optimizer.zero_grad() self.critic_optimizer.zero_grad() total_loss.backward() self.actor_optimizer.step() self.critic_optimizer.step() self.memory.clear() def save(self,path): actor_checkpoint = os.path.join(path, 'ppo_actor.pt') critic_checkpoint= os.path.join(path, 'ppo_critic.pt') torch.save(self.actor.state_dict(), actor_checkpoint) torch.save(self.critic.state_dict(), critic_checkpoint) def load(self,path): actor_checkpoint = os.path.join(path, 'ppo_actor.pt') critic_checkpoint= os.path.join(path, 'ppo_critic.pt') self.actor.load_state_dict(torch.load(actor_checkpoint)) self.critic.load_state_dict(torch.load(critic_checkpoint))