
目录 1

目录

模版备用 2

1 模版备用

算法¬

1: 测试

¬脚注

Q LEARNING 算法 3

2 Q learning 算法

Q-learning 算法¬

1: 初始化 Q 表 Q(s, a) 为任意值，但其中 Q(sterminal,) = 0，即终止状态
对应的 Q 值为 0

2: for 回合数 = 1,M do
3: 重置环境，获得初始状态 s1
4: for 时步 = 1, T do
5: 根据 ε− greedy 策略采样动作 at
6: 环境根据 at 反馈奖励 rt 和下一个状态 st+1

7: 更新策略：
8: Q(st, at)← Q(st, at) + α[rt + γmaxaQ(st+1, a)−Q(st, at)]
9: 更新状态 st+1 ← st

10: end for
11: end for

¬Reinforcement Learning: An Introduction

SARSA 算法 4

3 Sarsa 算法

Sarsa 算法¬

1: 初始化 Q 表 Q(s, a) 为任意值，但其中 Q(sterminal,) = 0，即终止状态
对应的 Q 值为 0

2: for 回合数 = 1,M do
3: 重置环境，获得初始状态 s1
4: 根据 ε− greedy 策略采样初始动作 a1
5: for 时步 = 1, t do
6: 环境根据 at 反馈奖励 rt 和下一个状态 st+1

7: 根据 ε− greedy 策略 st+1 和采样动作 at+1

8: 更新策略：
9: Q(st, at)← Q(st, at) + α[rt + γQ(st+1, at+1)−Q(st, at)]

10: 更新状态 st+1 ← st
11: 更新动作 at+1 ← at
12: end for
13: end for

¬Reinforcement Learning: An Introduction

DQN 算法 5

4 DQN 算法

DQN 算法¬

1: 初始化策略网络参数 θ
2: 复制参数到目标网络 Q̂← Q
3: 初始化经验回放 D
4: for 回合数 = 1,M do
5: 重置环境，获得初始状态 st
6: for 时步 = 1, t do
7: 根据 ε− greedy 策略采样动作 at
8: 环境根据 at 反馈奖励 rt 和下一个状态 st+1

9: 存储 transition 即 (st, at, rt, st+1) 到经验回放 D 中
10: 更新环境状态 st+1 ← st
11: 更新策略：
12: 从 D 中采样一个 batch 的 transition
13: 计算实际的 Q 值，即 yj

­

14: 对损失 L(θ) = (yi −Q (si, ai; θ))
2 关于参数 θ 做随机梯度下降®

15: end for
16: 每 C 个回合复制参数 Q̂← Q¯]
17: end for

¬Playing Atari with Deep Reinforcement Learning

­yi =

ri 对于终止状态si+1

ri + γ maxa′ Q (si+1, a
′; θ) 对于非终止状态si+1

®θi ← θi − λ∇θiLi (θi)
¯此处也可像原论文中放到小循环中改成每 C 步，但没有每 C 个回合稳定

PER_DQN 算法 6

5 PER_DQN 算法

PER_DQN 算法¬

1: 初始化策略网络参数 θ
2: 复制参数到目标网络 Q̂← Q
3: 初始化经验回放 D
4: for 回合数 = 1,M do
5: 重置环境，获得初始状态 st
6: for 时步 = 1, t do
7: 根据 ε− greedy 策略采样动作 at
8: 环境根据 at 反馈奖励 rt 和下一个状态 st+1

9: 存储 transition 即 (st, at, rt, st+1) 到经验回放 D，并根据 TD-error
损失确定其优先级 pt

10: 更新环境状态 st+1 ← st
11: 更新策略：
12: 按照经验回放中的优先级别，每个样本采样概率为 P (j) =

pαj /
∑

i p
α
i，从 D 中采样一个大小为 batch 的 transition

13: 计算各个样本重要性采样权重 wj = (N · P (j))−β/maxiwi
14: 计算 TD-error δj ; 并根据 TD-error 更新优先级 pj
15: 计算实际的 Q 值，即 yj

­

16: 根据重要性采样权重调整损失 L(θ) = (yj −Q (sj , aj ; θ) · wj)2，并
将其关于参数 θ 做随机梯度下降®

17: end for
18: 每 C 个回合复制参数 Q̂← Q¯]
19: end for

¬Playing Atari with Deep Reinforcement Learning

­yi =

ri 对于终止状态si+1

ri + γ maxa′ Q (si+1, a
′; θ) 对于非终止状态si+1

®θi ← θi − λ∇θiLi (θi)
¯此处也可像原论文中放到小循环中改成每 C 步，但没有每 C 个回合稳定

POLICY GRADIENT 算法 7

6 Policy Gradient 算法

REINFORCE 算法：Monte-Carlo Policy Gradient¬

1: 初始化策略参数 θ ∈ Rd′(e.g., to 0)
2: for 回合数 = 1,M do
3: 根据策略 π(· | ·,θ) 采样一个 (或几个) 回合的 transition
4: for 时步 = 0, 1, 2, ..., T − 1 do
5: 计算回报 G←

∑T
k=t+1 γ

k−t−1Rk
6: 更新策略 θ ← θ + αγtG∇ lnπ (At | St,θ)
7: end for
8: end for

¬Reinforcement Learning: An Introduction

ADVANTAGE ACTOR CRITIC 算法 8

7 Advantage Actor Critic 算法

Q Actor Critic 算法
1: 初始化 Actor 参数 θ 和 Critic 参数 w
2: for 回合数 = 1,M do
3: 根据策略 πθ(a|s) 采样一个 (或几个) 回合的 transition
4: 更新 Critic 参数¬

5: for 时步 = t+ 1, 1 do
6: 计算 Advantage，即 δt = rt + γQw(st+1, at+1)−Qw(st, at)
7: w ← w + αwδt∇wQw(st, at)
8: at ← at+1,st ← st+1

9: end for
10: 更新 Actor 参数 θ ← θ + αθQw(s, a)∇θ logπθ(a | s)
11: end for

¬这里结合 TD error 的特性按照从 t+ 1 到 1 计算法 Advantage 更方便

PPO-CLIP 算法 9

8 PPO-Clip 算法

PPO-Clip 算法¬­

1: 初始化策略网络 (Actor) 参数 θ 和价值网络 (Critic) 参数 ϕ
2: 初始化 Clip 参数 ϵ
3: 初始化 epoch 数量 K
4: 初始化经验回放 D
5: 初始化总时步数 c = 0
6: for 回合数 = 1, 2, · · · ,M do
7: 重置环境，获得初始状态 s0
8: for 时步 t = 1, 2, · · · , T do
9: 计数总时步 c← c+ 1

10: 根据策略 πθ 选择 at
11: 环境根据 at 反馈奖励 rt 和下一个状态 st+1

12: 存储 (st, at, rt, st+1) 到经验回放 D 中
13: if c 被 C 整除® then
14: for k = 1, 2, · · · ,K do
15: 测试
16: end for
17: 清空经验回放 D
18: end if
19: end for
20: end for

¬Proximal Policy Optimization Algorithms
­https://spinningup.openai.com/en/latest/algorithms/ppo.html
®即每 C 个时步更新策略

DDPG 算法 10

9 DDPG 算法

DDPG 算法¬

1: 初始化 critic 网络 Q
(
s, a | θQ

)
和 actor 网络 µ(s|θµ) 的参数 θQ 和 θµ

2: 初始化对应的目标网络参数，即 θQ
′ ← θQ, θµ

′ ← θµ

3: 初始化经验回放 R
4: for 回合数 = 1,M do
5: 选择动作 at = µ (st | θµ) +Nt，Nt 为探索噪声
6: 环境根据 at 反馈奖励 st 和下一个状态 st+1

7: 存储 transition(st, at, rt, st+1) 到经验回放 R 中
8: 更新环境状态 st+1 ← st
9: 更新策略：

10: 从 R 中取出一个随机批量的 (si, ai, ri, si+1)

11: 求得 yi = ri + γQ′
(
si+1, µ

′
(
si+1 | θµ

′
)
| θQ′

)
12: 更新 critic 参数，其损失为：L = 1

N

∑
i

(
yi −Q

(
si, ai | θQ

))2
13: 更新 actor参数：∇θµJ ≈ 1

N

∑
i∇aQ

(
s, a | θQ

)∣∣
s=si,a=µ(si)

∇θµµ (s | θµ)
∣∣∣
si

14: 软更新目标网络：θQ′ ← τθQ + (1− τ)θQ′，θµ′ ← τθµ + (1− τ)θµ′

15: end for

¬Continuous control with deep reinforcement learning

SOFTQ 算法 11

10 SoftQ 算法

SoftQ 算法
1: 初始化参数 θ 和 ϕ
2: 复制参数 θ̄ ← θ, ϕ̄← ϕ
3: 初始化经验回放 D
4: for 回合数 = 1,M do
5: for 时步 = 1, t do
6: 根据 at ← fϕ (ξ; st) 采样动作，其中 ξ ∼ N (0, I)
7: 环境根据 at 反馈奖励 st 和下一个状态 st+1

8: 存储 transition 即 (st, at, rt, st+1) 到经验回放 D 中
9: 更新环境状态 st+1 ← st

10: 更新 soft Q 函数参数：
11: 对于每个 s

(i)
t+1 采样

{
a(i,j)

}M
j=0
∼ qa′

12: 计算 empirical soft values V θ
soft (st)¬

13: 计算 empirical gradient JQ(θ)­

14: 根据 JQ(θ) 使用 ADAM 更新参数 θ
15: 更新策略：
16: 对于每个 s

(i)
t 采样

{
ξ(i,j)

}M
j=0
∼ N (0, I)

17: 计算 a(i,j)
t = fϕ

(
ξ(i,j), s(i)t

)
18: 使用经验估计计算 ∆fϕ (·; st)®

19: 计算经验估计 ∂Jπ(ϕ;st)
∂ϕ ∝ Eξ

[
∆fϕ (ξ; st) ∂f

ϕ(ξ;st)
∂ϕ

]
，即 ∇̂ϕJπ

20: 根据 ∇̂ϕJπ 使用 ADAM 更新参数 ϕ
21:
22: end for
23: 每 C 个回合复制参数 θ̄ ← θ, ϕ̄← ϕ
24: end for

¬V θ
soft (st) = α logEqa′

[
exp(1

α
Qθ

soft(st,a′))
qa′ (a′)

]
­JQ(θ) = Est∼qst ,at∼qat

[
1
2

(
Q̂θ̄

soft (st,at)−Qθ
soft (st,at)

)2
]

®

∆fϕ (·; st) =Eat∼πϕ

[
κ
(

at, f
ϕ (·; st)

)
∇a′Qθ

soft
(
st,a′)∣∣∣

a′=at

+ α∇a′κ
(

a′, fϕ (·; st)
)∣∣∣

a′=at

]

SAC-S 算法 12

11 SAC-S 算法

SAC-S 算法¬

1: 初始化参数 ψ, ψ̄, θ, ϕ
2: for 回合数 = 1,M do
3: for 时步 = 1, t do
4: 根据 at ∼ πϕ (at | st) 采样动作 at
5: 环境反馈奖励和下一个状态，st+1 ∼ p (st+1 | st,at)
6: 存储 transition 到经验回放中，D ← D ∪ {(st,at, r (st,at) , st+1)}
7: 更新环境状态 st+1 ← st
8: 更新策略：
9: ψ ← ψ − λV ∇̂ψJV (ψ)

10: θi ← θi − λQ∇̂θiJQ (θi) for i ∈ {1, 2}
11: ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
12: ψ̄ ← τψ + (1− τ)ψ̄
13: end for
14: end for

¬Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor

SAC 算法 13

12 SAC 算法

SAC 算法¬

1: 初始化网络参数 θ1, θ2 以及 ϕ
2: 复制参数到目标网络 θ̄1 ← θ1, θ̄2 ← θ2,
3: 初始化经验回放 D
4: for 回合数 = 1,M do
5: 重置环境，获得初始状态 st
6: for 时步 = 1, t do
7: 根据 at ∼ πϕ (at | st) 采样动作 at
8: 环境反馈奖励和下一个状态，st+1 ∼ p (st+1 | st,at)
9: 存储 transition 到经验回放中，D ← D ∪ {(st,at, r (st,at) , st+1)}

10: 更新环境状态 st+1 ← st
11: 更新策略：
12: 更新 Q 函数，θi ← θi − λQ∇̂θiJQ (θi) for i ∈ {1, 2}­®

13: 更新策略权重，ϕ← ϕ− λπ∇̂ϕJπ(ϕ) ¯

14: 调整 temperature，α← α− λ∇̂αJ(α) °

15: 更新目标网络权重，θ̄i ← τθi + (1− τ)θ̄i for i ∈ {1, 2}
16: end for
17: end for

­Soft Actor-Critic Algorithms and Applications
­JQ(θ) = E(st,at)∼D

[
1
2

(
Qθ (st,at)−

(
r (st,at) + γEst+1∼p [Vθ̄ (st+1)]

))2]
®∇̂θJQ(θ) = ∇θQθ (at, st) (Qθ (st,at)− (r (st,at) + γ (Qθ̄ (st+1,at+1)− α log (πϕ (at+1 | st+1))))
¯∇̂ϕJπ(ϕ) = ∇ϕα log (πϕ (at | st))+(∇atα log (πϕ (at | st))−∇atQ (st,at))∇ϕfϕ (ϵt; st),at =

fϕ (ϵt; st)
°J(α) = Eat∼πt

[
−α logπt (at | st)− αH

]

