#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:48:57 @LastEditor: John LastEditTime: 2021-03-30 16:59:19 @Discription: @Environment: python 3.7.7 ''' import sys,os from pathlib import Path import sys,os curr_path = os.path.dirname(__file__) parent_path=os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import gym import torch import datetime from DQN.agent import DQN from common.plot import plot_rewards from common.utils import save_results SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model if not os.path.exists(curr_path+"/saved_model/"): os.mkdir(curr_path+"/saved_model/") if not os.path.exists(SAVED_MODEL_PATH): os.mkdir(SAVED_MODEL_PATH) RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards if not os.path.exists(curr_path+"/results/"): os.mkdir(curr_path+"/results/") if not os.path.exists(RESULT_PATH): os.mkdir(RESULT_PATH) class DQNConfig: def __init__(self): self.algo = "DQN" # name of algo self.gamma = 0.95 self.epsilon_start = 1 # e-greedy策略的初始epsilon self.epsilon_end = 0.01 self.epsilon_decay = 500 self.lr = 0.0001 # learning rate self.memory_capacity = 10000 # Replay Memory容量 self.batch_size = 32 self.train_eps = 300 # 训练的episode数目 self.target_update = 2 # target net的更新频率 self.eval_eps = 20 # 测试的episode数目 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu self.hidden_dim = 256 # 神经网络隐藏层维度 def train(cfg,env,agent): print('Start to train !') rewards = [] ma_rewards = [] # moveing average reward for i_episode in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while not done: action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) state = next_state agent.update() if i_episode % cfg.target_update == 0: agent.target_net.load_state_dict(agent.policy_net.state_dict()) print('Episode:{}/{}, Reward:{}'.format(i_episode+1,cfg.train_eps,ep_reward)) rewards.append(ep_reward) # 计算滑动窗口的reward if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards,ma_rewards if __name__ == "__main__": cfg = DQNConfig() env = gym.make('CartPole-v0') env.seed(1) state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = DQN(state_dim,action_dim,cfg) rewards,ma_rewards = train(cfg,env,agent) agent.save(path=SAVED_MODEL_PATH) save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH) plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)