#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:21:53 LastEditor: John LastEditTime: 2022-02-10 06:13:21 Discription: Environment: ''' import sys import os curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径 parent_path = os.path.dirname(curr_path) # 父路径 sys.path.append(parent_path) # 添加路径到系统路径 import gym import torch import datetime from itertools import count from pg import PolicyGradient from common.utils import save_results, make_dir from common.utils import plot_rewards curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间 class Config: '''超参数 ''' def __init__(self): ################################## 环境超参数 ################################### self.algo_name = "PolicyGradient" # 算法名称 self.env_name = 'CartPole-v0' # 环境名称 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 检测GPUgjgjlkhfsf风刀霜的撒发十 self.seed = 10 # 随机种子,置0则不设置随机种子 self.train_eps = 300 # 训练的回合数 self.test_eps = 30 # 测试的回合数 ################################################################################ ################################## 算法超参数 ################################### self.batch_size = 8 # mini-batch SGD中的批量大小 self.lr = 0.01 # 学习率 self.gamma = 0.99 # 强化学习中的折扣因子 self.hidden_dim = 36 # 网络隐藏层 ################################################################################ ################################# 保存结果相关参数 ################################ self.result_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/results/' # 保存结果的路径 self.model_path = curr_path + "/outputs/" + self.env_name + \ '/' + curr_time + '/models/' # 保存模型的路径 self.save = True # 是否保存图片 ################################################################################ def env_agent_config(cfg,seed=1): env = gym.make(cfg.env_name) env.seed(seed) n_states = env.observation_space.shape[0] agent = PolicyGradient(n_states,cfg) return env,agent def train(cfg,env,agent): print('开始训练!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') state_pool = [] # 存放每batch_size个episode的state序列 action_pool = [] reward_pool = [] rewards = [] ma_rewards = [] for i_ep in range(cfg.train_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state_pool.append(state) action_pool.append(float(action)) reward_pool.append(reward) state = next_state if done: print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward)) break if i_ep > 0 and i_ep % cfg.batch_size == 0: agent.update(reward_pool,state_pool,action_pool) state_pool = [] # 每个episode的state action_pool = [] reward_pool = [] rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('完成训练!') env.close() return rewards, ma_rewards def test(cfg,env,agent): print('开始测试!') print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}') rewards = [] ma_rewards = [] for i_ep in range(cfg.test_eps): state = env.reset() ep_reward = 0 for _ in count(): action = agent.choose_action(state) # 根据当前环境state选择action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state = next_state if done: print('回合:{}/{}, 奖励:{}'.format(i_ep + 1, cfg.train_eps, ep_reward)) break rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('完成测试!') env.close() return rewards, ma_rewards if __name__ == "__main__": cfg = Config() # 训练 env, agent = env_agent_config(cfg) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) # 创建保存结果和模型路径的文件夹 agent.save(path=cfg.model_path) # 保存模型 save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, cfg, tag="train") # 画出结果 # 测试 env, agent = env_agent_config(cfg) agent.load(path=cfg.model_path) # 导入模型 rewards, ma_rewards = test(cfg, env, agent) save_results(rewards, ma_rewards, tag='test', path=cfg.result_path) # 保存结果 plot_rewards(rewards, ma_rewards, cfg, tag="test") # 画出结果