#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-11 20:58:21 @LastEditor: John LastEditTime: 2022-07-21 00:05:41 @Discription: @Environment: python 3.7.7 ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add to system path import datetime import gym import torch import argparse from env import NormalizedActions,OUNoise from ddpg import DDPG from common.utils import save_results,make_dir from common.utils import plot_rewards,save_args def get_args(): """ Hyperparameters """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='DDPG',type=str,help="name of algorithm") parser.add_argument('--env_name',default='Pendulum-v1',type=str,help="name of environment") parser.add_argument('--train_eps',default=300,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") parser.add_argument('--critic_lr',default=1e-3,type=float,help="learning rate of critic") parser.add_argument('--actor_lr',default=1e-4,type=float,help="learning rate of actor") parser.add_argument('--memory_capacity',default=8000,type=int,help="memory capacity") parser.add_argument('--batch_size',default=128,type=int) parser.add_argument('--target_update',default=2,type=int) parser.add_argument('--soft_tau',default=1e-2,type=float) parser.add_argument('--hidden_dim',default=256,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/results/' ) parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \ '/' + curr_time + '/models/' ) # path to save models parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") args = parser.parse_args() return args def env_agent_config(cfg,seed=1): env = NormalizedActions(gym.make(cfg.env_name)) # 装饰action噪声 env.seed(seed) # 随机种子 n_states = env.observation_space.shape[0] n_actions = env.action_space.shape[0] agent = DDPG(n_states,n_actions,cfg) return env,agent def train(cfg, env, agent): print('Start training!') print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}') ou_noise = OUNoise(env.action_space) # noise of action rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.train_eps): state = env.reset() ou_noise.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) action = ou_noise.get_action(action, i_step) next_state, reward, done, _ = env.step(action) ep_reward += reward agent.memory.push(state, action, reward, next_state, done) agent.update() state = next_state if (i_ep+1)%10 == 0: print(f'Env:{i_ep+1}/{cfg.train_eps}, Reward:{ep_reward:.2f}') rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Finish training!') return rewards, ma_rewards def test(cfg, env, agent): print('Start testing') print(f'Env:{cfg.env_name}, Algorithm:{cfg.algo_name}, Device:{cfg.device}') rewards = [] # 记录所有回合的奖励 ma_rewards = [] # 记录所有回合的滑动平均奖励 for i_ep in range(cfg.test_eps): state = env.reset() done = False ep_reward = 0 i_step = 0 while not done: i_step += 1 action = agent.choose_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward state = next_state rewards.append(ep_reward) if ma_rewards: ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print(f"Epside:{i_ep+1}/{cfg.test_eps}, Reward:{ep_reward:.1f}") print('Finish testing!') return rewards, ma_rewards if __name__ == "__main__": cfg = get_args() # training env,agent = env_agent_config(cfg,seed=1) rewards, ma_rewards = train(cfg, env, agent) make_dir(cfg.result_path, cfg.model_path) save_args(cfg) agent.save(path=cfg.model_path) save_results(rewards, ma_rewards, tag='train', path=cfg.result_path) plot_rewards(rewards, ma_rewards, cfg, tag="train") # testing env,agent = env_agent_config(cfg,seed=10) agent.load(path=cfg.model_path) rewards,ma_rewards = test(cfg,env,agent) save_results(rewards,ma_rewards,tag = 'test',path = cfg.result_path) plot_rewards(rewards, ma_rewards, cfg, tag="test")