#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2020-11-22 23:21:53 LastEditor: John LastEditTime: 2022-08-27 00:04:08 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(os.path.abspath(__file__)) # current path parent_path = os.path.dirname(curr_path) # parent path sys.path.append(parent_path) # add to system path import gym import torch import datetime import argparse from itertools import count import torch.nn.functional as F from pg import PolicyGradient from common.utils import save_results, make_dir,all_seed,save_args,plot_rewards from common.models import MLP from common.memories import PGReplay from common.launcher import Launcher from envs.register import register_env class PGNet(MLP): ''' instead of outputing action, PG Net outputs propabilities of actions, we can use class inheritance from MLP here ''' def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = torch.sigmoid(self.fc3(x)) return x class Main(Launcher): def get_args(self): """ Hyperparameters """ curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # Obtain current time parser = argparse.ArgumentParser(description="hyperparameters") parser.add_argument('--algo_name',default='PolicyGradient',type=str,help="name of algorithm") parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment") parser.add_argument('--train_eps',default=200,type=int,help="episodes of training") parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing") parser.add_argument('--ep_max_steps',default = 100000,type=int,help="steps per episode, much larger value can simulate infinite steps") parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor") parser.add_argument('--lr',default=0.01,type=float,help="learning rate") parser.add_argument('--update_fre',default=8,type=int) parser.add_argument('--hidden_dim',default=36,type=int) parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda") parser.add_argument('--seed',default=1,type=int,help="seed") parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not") parser.add_argument('--show_fig',default=False,type=bool,help="if show figure or not") args = parser.parse_args() default_args = {'result_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/results/", 'model_path':f"{curr_path}/outputs/{args.env_name}/{curr_time}/models/", } args = {**vars(args),**default_args} # type(dict) return args def env_agent_config(self,cfg): register_env(cfg['env_name']) env = gym.make(cfg['env_name']) if cfg['seed'] !=0: # set random seed all_seed(env,seed=cfg['seed']) n_states = env.observation_space.shape[0] n_actions = env.action_space.n # action dimension print(f"state dim: {n_states}, action dim: {n_actions}") cfg.update({"n_states":n_states,"n_actions":n_actions}) # update to cfg paramters model = PGNet(n_states,1,hidden_dim=cfg['hidden_dim']) memory = PGReplay() agent = PolicyGradient(model,memory,cfg) return env,agent def train(self,cfg,env,agent): print("Start training!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] for i_ep in range(cfg['train_eps']): state = env.reset() ep_reward = 0 for _ in range(cfg['ep_max_steps']): action = agent.sample_action(state) # sample action next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 agent.memory.push((state,float(action),reward)) state = next_state if done: break if (i_ep+1) % 10 == 0: print(f"Episode:{i_ep+1}/{cfg['train_eps']}, Reward:{ep_reward:.2f}") if (i_ep+1) % cfg['update_fre'] == 0: agent.update() rewards.append(ep_reward) print('Finish training!') env.close() # close environment res_dic = {'episodes':range(len(rewards)),'rewards':rewards} return res_dic def test(self,cfg,env,agent): print("Start testing!") print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}") rewards = [] for i_ep in range(cfg['test_eps']): state = env.reset() ep_reward = 0 for _ in range(cfg['ep_max_steps']): action = agent.predict_action(state) next_state, reward, done, _ = env.step(action) ep_reward += reward if done: reward = 0 state = next_state if done: break print(f"Episode: {i_ep+1}/{cfg['test_eps']},Reward: {ep_reward:.2f}") rewards.append(ep_reward) print("Finish testing!") env.close() return {'episodes':range(len(rewards)),'rewards':rewards} if __name__ == "__main__": main = Main() main.run()