#!/usr/bin/env python # coding=utf-8 ''' Author: John Email: johnjim0816@gmail.com Date: 2021-03-29 10:37:32 LastEditor: John LastEditTime: 2021-03-31 14:58:49 Discription: Environment: ''' import sys,os curr_path = os.path.dirname(__file__) parent_path = os.path.dirname(curr_path) sys.path.append(parent_path) # add current terminal path to sys.path import datetime import numpy as np import torch import gym from common.utils import save_results from common.plot import plot_rewards,plot_losses from HierarchicalDQN.agent import HierarchicalDQN SEQUENCE = datetime.datetime.now().strftime( "%Y%m%d-%H%M%S") # obtain current time SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model if not os.path.exists(curr_path+"/saved_model/"): os.mkdir(curr_path+"/saved_model/") if not os.path.exists(SAVED_MODEL_PATH): os.mkdir(SAVED_MODEL_PATH) RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards if not os.path.exists(curr_path+"/results/"): os.mkdir(curr_path+"/results/") if not os.path.exists(RESULT_PATH): os.mkdir(RESULT_PATH) class HierarchicalDQNConfig: def __init__(self): self.algo = "H-DQN" # name of algo self.gamma = 0.99 self.epsilon_start = 1 # start epsilon of e-greedy policy self.epsilon_end = 0.01 self.epsilon_decay = 200 self.lr = 0.0001 # learning rate self.memory_capacity = 10000 # Replay Memory capacity self.batch_size = 32 self.train_eps = 300 # 训练的episode数目 self.target_update = 2 # target net的更新频率 self.eval_eps = 20 # 测试的episode数目 self.device = torch.device( "cuda" if torch.cuda.is_available() else "cpu") # 检测gpu self.hidden_dim = 256 # dimension of hidden layer def train(cfg, env, agent): print('Start to train !') rewards = [] ma_rewards = [] # moveing average reward for i_episode in range(cfg.train_eps): state = env.reset() done = False ep_reward = 0 while not done: goal = agent.set_goal(state) onehot_goal = agent.to_onehot(goal) meta_state = state extrinsic_reward = 0 while not done and goal != np.argmax(state): goal_state = np.concatenate([state, onehot_goal]) action = agent.choose_action(goal_state) next_state, reward, done, _ = env.step(action) ep_reward += reward extrinsic_reward += reward intrinsic_reward = 1.0 if goal == np.argmax( next_state) else 0.0 agent.memory.push(goal_state, action, intrinsic_reward, np.concatenate( [next_state, onehot_goal]), done) state = next_state agent.update() agent.meta_memory.push(meta_state, goal, extrinsic_reward, state, done) print('Episode:{}/{}, Reward:{}, Loss:{:.2f}, Meta_Loss:{:.2f}'.format(i_episode+1, cfg.train_eps, ep_reward,agent.loss_numpy ,agent.meta_loss_numpy )) rewards.append(ep_reward) if ma_rewards: ma_rewards.append( 0.9*ma_rewards[-1]+0.1*ep_reward) else: ma_rewards.append(ep_reward) print('Complete training!') return rewards, ma_rewards if __name__ == "__main__": env = gym.make('CartPole-v0') env.seed(1) cfg = HierarchicalDQNConfig() state_dim = env.observation_space.shape[0] action_dim = env.action_space.n agent = HierarchicalDQN(state_dim, action_dim, cfg) rewards, ma_rewards = train(cfg, env, agent) agent.save(path=SAVED_MODEL_PATH) save_results(rewards, ma_rewards, tag='train', path=RESULT_PATH) plot_rewards(rewards, ma_rewards, tag="train", algo=cfg.algo, path=RESULT_PATH) plot_losses(agent.losses,algo=cfg.algo, path=RESULT_PATH)