#!/usr/bin/env python # coding=utf-8 ''' @Author: John @Email: johnjim0816@gmail.com @Date: 2020-06-12 00:50:49 @LastEditor: John LastEditTime: 2021-09-15 13:35:36 @Discription: @Environment: python 3.7.7 ''' '''off-policy ''' import torch import torch.nn as nn import torch.optim as optim import random import math import numpy as np from common.memory import ReplayBuffer from common.model import MLP class DQN: def __init__(self, state_dim, action_dim, cfg): self.action_dim = action_dim # 总的动作个数 self.device = cfg.device # 设备,cpu或gpu等 self.gamma = cfg.gamma # 奖励的折扣因子 # e-greedy策略相关参数 self.frame_idx = 0 # 用于epsilon的衰减计数 self.epsilon = lambda frame_idx: cfg.epsilon_end + \ (cfg.epsilon_start - cfg.epsilon_end) * \ math.exp(-1. * frame_idx / cfg.epsilon_decay) self.batch_size = cfg.batch_size self.policy_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device) self.target_net = MLP(state_dim, action_dim,hidden_dim=cfg.hidden_dim).to(self.device) for target_param, param in zip(self.target_net.parameters(),self.policy_net.parameters()): # 复制参数到目标网路targe_net target_param.data.copy_(param.data) self.optimizer = optim.Adam(self.policy_net.parameters(), lr=cfg.lr) # 优化器 self.memory = ReplayBuffer(cfg.memory_capacity) def choose_action(self, state): '''选择动作 ''' self.frame_idx += 1 if random.random() > self.epsilon(self.frame_idx): with torch.no_grad(): state = torch.tensor([state], device=self.device, dtype=torch.float32) q_values = self.policy_net(state) action = q_values.max(1)[1].item() # 选择Q值最大的动作 else: action = random.randrange(self.action_dim) return action def predict(self,state): with torch.no_grad(): state = torch.tensor([state], device=self.device, dtype=torch.float32) q_values = self.policy_net(state) action = q_values.max(1)[1].item() return action def update(self): if len(self.memory) < self.batch_size: # 当memory中不满足一个批量时,不更新策略 return # 从经验回放中(replay memory)中随机采样一个批量的转移(transition) state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample( self.batch_size) # 转为张量 state_batch = torch.tensor( state_batch, device=self.device, dtype=torch.float) action_batch = torch.tensor(action_batch, device=self.device).unsqueeze( 1) reward_batch = torch.tensor( reward_batch, device=self.device, dtype=torch.float) next_state_batch = torch.tensor( next_state_batch, device=self.device, dtype=torch.float) done_batch = torch.tensor(np.float32( done_batch), device=self.device) q_values = self.policy_net(state_batch).gather(dim=1, index=action_batch) # 计算当前状态(s_t,a)对应的Q(s_t, a) next_q_values = self.target_net(next_state_batch).max(1)[0].detach() # 计算下一时刻的状态(s_t_,a)对应的Q值 # 计算期望的Q值,对于终止状态,此时done_batch[0]=1, 对应的expected_q_value等于reward expected_q_values = reward_batch + self.gamma * next_q_values * (1-done_batch) loss = nn.MSELoss()(q_values, expected_q_values.unsqueeze(1)) # 计算均方根损失 # 优化更新模型 self.optimizer.zero_grad() loss.backward() for param in self.policy_net.parameters(): # clip防止梯度爆炸 param.grad.data.clamp_(-1, 1) self.optimizer.step() def save(self, path): torch.save(self.target_net.state_dict(), path+'dqn_checkpoint.pth') def load(self, path): self.target_net.load_state_dict(torch.load(path+'dqn_checkpoint.pth')) for target_param, param in zip(self.target_net.parameters(), self.policy_net.parameters()): param.data.copy_(target_param.data)