fix ch1 typos

This commit is contained in:
qiwang067
2021-01-27 16:33:42 +08:00
parent 0d1cf08de3
commit fe60044e8d

View File

@@ -150,7 +150,7 @@
### Sequential Decision Making
![](img/1.21.png ':size=450')
![](img/1.21.png)
在一个强化学习环境里面agent 的目的就是选取一系列的动作来极大化它的奖励,所以这些采取的动作必须有长期的影响。但在这个过程里面,它的奖励其实是被延迟了,就是说你现在采取的某一步决策可能要等到时间很久过后才知道这一步到底产生了什么样的影响。
@@ -321,7 +321,7 @@ A: 针对是否需要对真实环境建模,强化学习可以分为有模型
* 免模型学习更为简单直观且有丰富的开源资料,像 DQN、AlphaGo 系列等都采用免模型学习;
* 在目前的强化学习研究中,大部分情况下环境都是静态的、可描述的,智能体的状态是离散的、可观察的(如 Atari 游戏平台),这种相对简单确定的问题并不需要评估状态转移函数和奖励函数,直接采用免模型学习,使用大量的样本进行训练就能获得较好的效果。
![](img/1.36.png ':size=500')
![](img/1.36.png ':size=550')
把几类模型放到同一个饼图里面。饼图有三个组成部分:价值函数、策略和模型。按一个 agent 具不具有三者中的两者或者一者可以把它分成很多类。
@@ -347,14 +347,13 @@ Learning 和 Planning 是序列决策的两个基本问题。
## Exploration and Exploitation
![](img/1.37.png)
在强化学习里面,`探索``利用` 是两个很核心的问题。
* 探索是说我们怎么去探索这个环境,通过尝试不同的行为来得到一个最佳的策略,得到最大奖励的策略。
* 利用是说我们不去尝试新的东西,就采取已知的可以得到很大奖励的行为。
因为在刚开始的时候强化学习 agent 不知道它采取了某个行为会发生什么,所以它只能通过试错去探索。所以探索就是在试错来理解采取的这个行为到底可不可以得到好的奖励。利用是说我们直接采取已知的可以得到很好奖励的行为。所以这里就面临一个权衡,怎么通过牺牲一些短期的奖励来获得行为的理解。
因为在刚开始的时候强化学习 agent 不知道它采取了某个行为会发生什么,所以它只能通过试错去探索。所以探索就是在试错来理解采取的这个行为到底可不可以得到好的奖励。利用是说我们直接采取已知的可以得到很好奖励的行为。所以这里就面临一个权衡,怎么通过牺牲一些短期的奖励来获得行为的理解,从而学习到更好的策略
下面举一些探索和利用的例子。
@@ -391,7 +390,6 @@ Learning 和 Planning 是序列决策的两个基本问题。
事实上,探索(即估计摇臂的优劣)和利用(即选择当前最优摇臂)这两者是矛盾的,因为尝试次数(即总投币数)有限,加强了一方则会自然削弱另一方,这就是强化学习所面临的`探索-利用窘境(Exploration-Exploitation dilemma)`。显然,想要累积奖赏最大,则必须在探索与利用之间达成较好的折中。
## Experiment with Reinforcement Learning
![](img/1.40.png)
强化学习是一个理论跟实践结合的机器学习分支,需要去推导很多算法公式,去理解它算法背后的一些数学原理。另外一方面,上机实践通过实现算法,在很多实验环境里面去探索这个算法是不是可以得到预期效果也是一个非常重要的过程。
在[这个链接](https://github.com/cuhkrlcourse/RLexample)里面,公布了一些 RL 相关的代码,利用了 Python 和深度学习的一些包(主要是用 PyTorch 为主)。