update
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 49 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 48 KiB |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
After Width: | Height: | Size: 33 KiB |
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-09-20 00:32:59
|
||||
LastEditTime: 2021-09-23 12:22:58
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -34,7 +34,7 @@ class QlearningConfig:
|
||||
self.train_eps = 400 # 训练的回合数
|
||||
self.eval_eps = 30 # 测试的回合数
|
||||
self.gamma = 0.9 # reward的衰减率
|
||||
self.epsilon_start = 0.99 # e-greedy策略中初始epsilon
|
||||
self.epsilon_start = 0.95 # e-greedy策略中初始epsilon
|
||||
self.epsilon_end = 0.01 # e-greedy策略中的终止epsilon
|
||||
self.epsilon_decay = 300 # e-greedy策略中epsilon的衰减率
|
||||
self.lr = 0.1 # 学习率
|
||||
@@ -53,14 +53,15 @@ def env_agent_config(cfg,seed=1):
|
||||
def train(cfg,env,agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
rewards = []
|
||||
ma_rewards = [] # 滑动平均奖励
|
||||
rewards = [] # 记录奖励
|
||||
ma_rewards = [] # 记录滑动平均奖励
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # 记录每个回合的奖励
|
||||
state = env.reset() # 重置环境,即开始新的回合
|
||||
while True:
|
||||
action = agent.choose_action(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一次动作交互
|
||||
print(reward)
|
||||
agent.update(state, action, reward, next_state, done) # Q学习算法更新
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
@@ -78,6 +79,8 @@ def train(cfg,env,agent):
|
||||
def eval(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env}, 算法:{cfg.algo}, 设备:{cfg.device}')
|
||||
for item in agent.Q_table.items():
|
||||
print(item)
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 滑动平均的奖励
|
||||
for i_ep in range(cfg.eval_eps):
|
||||
@@ -86,7 +89,7 @@ def eval(cfg,env,agent):
|
||||
while True:
|
||||
action = agent.predict(state) # 根据算法选择一个动作
|
||||
next_state, reward, done, _ = env.step(action) # 与环境进行一个交互
|
||||
state = next_state # 存储上一个观察值
|
||||
state = next_state # 更新状态
|
||||
ep_reward += reward
|
||||
if done:
|
||||
break
|
||||
@@ -103,10 +106,12 @@ if __name__ == "__main__":
|
||||
cfg = QlearningConfig()
|
||||
|
||||
# 训练
|
||||
env,agent = env_agent_config(cfg,seed=1)
|
||||
env,agent = env_agent_config(cfg,seed=0)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(cfg.result_path,cfg.model_path) # 创建文件夹
|
||||
agent.save(path=cfg.model_path) # 保存模型
|
||||
for item in agent.Q_table.items():
|
||||
print(item)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path) # 保存结果
|
||||
plot_rewards_cn(rewards,ma_rewards,tag="train",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
@@ -114,6 +119,7 @@ if __name__ == "__main__":
|
||||
env,agent = env_agent_config(cfg,seed=10)
|
||||
agent.load(path=cfg.model_path) # 加载模型
|
||||
rewards,ma_rewards = eval(cfg,env,agent)
|
||||
|
||||
save_results(rewards,ma_rewards,tag='eval',path=cfg.result_path)
|
||||
plot_rewards_cn(rewards,ma_rewards,tag="eval",env=cfg.env,algo = cfg.algo,path=cfg.result_path)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user