add some codes
This commit is contained in:
115
codes/dqn_cnn/main.py
Normal file
115
codes/dqn_cnn/main.py
Normal file
@@ -0,0 +1,115 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 10:01:09
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-13 00:24:31
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
'''
|
||||
应该是没有收敛,但是pytorch官方教程的结果也差不多
|
||||
'''
|
||||
import gym
|
||||
import torch
|
||||
|
||||
from screen_state import get_screen
|
||||
from dqn import DQN
|
||||
from plot import plot
|
||||
|
||||
import argparse
|
||||
|
||||
def get_args():
|
||||
'''模型建立好之后只需要在这里调参
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--gamma", default=0.999, type=float) # q-learning中的gamma
|
||||
parser.add_argument("--epsilon_start", default=0.9, type=float) # 基于贪心选择action对应的参数epsilon
|
||||
parser.add_argument("--epsilon_end", default=0.05, type=float)
|
||||
parser.add_argument("--epsilon_decay", default=200, type=float)
|
||||
|
||||
parser.add_argument("--memory_capacity", default=10000, type=int,help="capacity of Replay Memory")
|
||||
|
||||
parser.add_argument("--batch_size", default=128, type=int,help="batch size of memory sampling")
|
||||
parser.add_argument("--max_episodes", default=100, type=int)
|
||||
parser.add_argument("--max_steps", default=200, type=int)
|
||||
parser.add_argument("--target_update", default=4, type=int,help="when(every default 10 eisodes) to update target net ")
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
cfg = get_args()
|
||||
# if gpu is to be used
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
# Get screen size so that we can initialize layers correctly based on shape
|
||||
# returned from AI gym. Typical dimensions at this point are close to 3x40x90
|
||||
# which is the result of a clamped and down-scaled render buffer in get_screen(env,device)
|
||||
env = gym.make('CartPole-v0').unwrapped
|
||||
env.reset()
|
||||
init_screen = get_screen(env, device)
|
||||
_, _, screen_height, screen_width = init_screen.shape
|
||||
# Get number of actions from gym action space
|
||||
n_actions = env.action_space.n
|
||||
agent = DQN(screen_height=screen_height, screen_width=screen_width,
|
||||
n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start, epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay, memory_capacity=cfg.memory_capacity,batch_size=cfg.batch_size)
|
||||
|
||||
rewards = []
|
||||
moving_average_rewards = []
|
||||
for i_episode in range(1,cfg.max_episodes+1):
|
||||
# Initialize the environment and state
|
||||
env.reset()
|
||||
last_screen = get_screen(env, device)
|
||||
current_screen = get_screen(env, device)
|
||||
state = current_screen - last_screen
|
||||
ep_reward = 0
|
||||
for t in range(1,cfg.max_steps+1):
|
||||
# Select and perform an action
|
||||
action = agent.select_action(state)
|
||||
_, reward, done, _ = env.step(action.item())
|
||||
ep_reward += reward
|
||||
reward = torch.tensor([reward], device=device)
|
||||
# Observe new state
|
||||
last_screen = current_screen
|
||||
current_screen = get_screen(env, device)
|
||||
|
||||
if done: break
|
||||
next_state = current_screen - last_screen
|
||||
|
||||
# Store the transition in memory
|
||||
agent.memory.push(state, action, next_state, reward)
|
||||
|
||||
# Move to the next state
|
||||
state = next_state
|
||||
|
||||
# Perform one step of the optimization (on the target network)
|
||||
agent.update()
|
||||
|
||||
# Update the target network, copying all weights and biases in DQN
|
||||
if i_episode % cfg.target_update == 0:
|
||||
agent.target_net.load_state_dict(agent.policy_net.state_dict())
|
||||
print('Episode:', i_episode, ' Reward: %i' %int(ep_reward), 'Explore: %.2f' % agent.epsilon)
|
||||
rewards.append(ep_reward)
|
||||
if i_episode == 1:
|
||||
moving_average_rewards.append(ep_reward)
|
||||
else:
|
||||
moving_average_rewards.append(
|
||||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
if not os.path.exists(output_path):
|
||||
os.mkdir(output_path)
|
||||
np.save(output_path+"rewards.npy", rewards)
|
||||
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
|
||||
print('Complete!')
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards,ylabel="moving_average_rewards")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user