add some codes
This commit is contained in:
107
codes/dqn_cnn/dqn.py
Normal file
107
codes/dqn_cnn/dqn.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import random
|
||||
import math
|
||||
import torch
|
||||
import torch.optim as optim
|
||||
import torch.nn.functional as F
|
||||
from memory import ReplayBuffer
|
||||
from model import CNN
|
||||
|
||||
|
||||
class DQN:
|
||||
def __init__(self, screen_height=0, screen_width=0, n_actions=0, gamma=0.999, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, batch_size=128, device="cpu"):
|
||||
self.actions_count = 0
|
||||
self.n_actions = n_actions
|
||||
self.device = device
|
||||
self.gamma = gamma
|
||||
self.epsilon = 0
|
||||
self.epsilon_start = epsilon_start
|
||||
self.epsilon_end = epsilon_end
|
||||
self.epsilon_decay = epsilon_decay
|
||||
self.batch_size = batch_size
|
||||
self.policy_net = CNN(screen_height, screen_width,
|
||||
n_actions).to(self.device)
|
||||
self.target_net = CNN(screen_height, screen_width,
|
||||
n_actions).to(self.device)
|
||||
self.target_net.load_state_dict(self.policy_net.state_dict())
|
||||
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
|
||||
self.optimizer = optim.RMSprop(self.policy_net.parameters())
|
||||
self.loss = 0
|
||||
self.memory = ReplayBuffer(memory_capacity)
|
||||
|
||||
|
||||
def select_action(self, state):
|
||||
'''choose_action [summary]
|
||||
Args:
|
||||
state [torch tensor]: [description]
|
||||
Returns:
|
||||
actions [torch tensor]: [description]
|
||||
'''
|
||||
sample = random.random()
|
||||
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
|
||||
math.exp(-1. * self.actions_count / self.epsilon_decay)
|
||||
self.actions_count += 1
|
||||
if sample > self.epsilon:
|
||||
with torch.no_grad():
|
||||
# t.max(1) will return largest column value of each row.
|
||||
# second column on max result is index of where max element was
|
||||
# found, so we pick action with the larger expected reward.
|
||||
|
||||
q_value = self.policy_net(state) # q_value比如tensor([[-0.2522, 0.3887]])
|
||||
action = q_value.max(1)[1].view(1, 1) # q_value最大对应的下标,注意该action是个张量,如tensor([1])
|
||||
return action
|
||||
else:
|
||||
return torch.tensor([[random.randrange(self.n_actions)]], device=self.device, dtype=torch.long)
|
||||
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size:
|
||||
return
|
||||
transitions = self.memory.sample(self.batch_size)
|
||||
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
|
||||
# detailed explanation). This converts batch-array of Transitions
|
||||
# to Transition of batch-arrays.
|
||||
batch = self.memory.Transition(*zip(*transitions))
|
||||
|
||||
# Compute a mask of non-final states and concatenate the batch elements
|
||||
# (a final state would've been the one after which simulation ended)
|
||||
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
|
||||
batch.next_state)), device=self.device, dtype=torch.bool)
|
||||
|
||||
non_final_next_states = torch.cat([s for s in batch.next_state
|
||||
if s is not None])
|
||||
state_batch = torch.cat(batch.state)
|
||||
action_batch = torch.cat(batch.action)
|
||||
reward_batch = torch.cat(batch.reward) # tensor([1., 1.,...,])
|
||||
|
||||
|
||||
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
|
||||
# columns of actions taken. These are the actions which would've been taken
|
||||
# for each batch state according to policy_net
|
||||
state_action_values = self.policy_net(
|
||||
state_batch).gather(1, action_batch) #tensor([[ 1.1217],...,[ 0.8314]])
|
||||
|
||||
# Compute V(s_{t+1}) for all next states.
|
||||
# Expected values of actions for non_final_next_states are computed based
|
||||
# on the "older" target_net; selecting their best reward with max(1)[0].
|
||||
# This is merged based on the mask, such that we'll have either the expected
|
||||
# state value or 0 in case the state was final.
|
||||
next_state_values = torch.zeros(self.batch_size, device=self.device)
|
||||
|
||||
next_state_values[non_final_mask] = self.target_net(
|
||||
non_final_next_states).max(1)[0].detach()
|
||||
|
||||
# Compute the expected Q values
|
||||
expected_state_action_values = (next_state_values * self.gamma) + reward_batch # tensor([0.9685, 0.9683,...,])
|
||||
|
||||
# Compute Huber loss
|
||||
self.loss = F.smooth_l1_loss(
|
||||
state_action_values, expected_state_action_values.unsqueeze(1)) # .unsqueeze增加一个维度
|
||||
# Optimize the model
|
||||
self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise you’d just accumulate the gradients from all loss.backward() calls).
|
||||
self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation.
|
||||
for param in self.policy_net.parameters(): # clip防止梯度爆炸
|
||||
param.grad.data.clamp_(-1, 1)
|
||||
self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters.
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dqn = DQN()
|
||||
Reference in New Issue
Block a user