add some codes

This commit is contained in:
qiwang067
2020-07-20 23:56:20 +08:00
parent aae36f5bb8
commit f4ac39625a
41 changed files with 1799 additions and 7 deletions

107
codes/dqn_cnn/dqn.py Normal file
View File

@@ -0,0 +1,107 @@
import random
import math
import torch
import torch.optim as optim
import torch.nn.functional as F
from memory import ReplayBuffer
from model import CNN
class DQN:
def __init__(self, screen_height=0, screen_width=0, n_actions=0, gamma=0.999, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, batch_size=128, device="cpu"):
self.actions_count = 0
self.n_actions = n_actions
self.device = device
self.gamma = gamma
self.epsilon = 0
self.epsilon_start = epsilon_start
self.epsilon_end = epsilon_end
self.epsilon_decay = epsilon_decay
self.batch_size = batch_size
self.policy_net = CNN(screen_height, screen_width,
n_actions).to(self.device)
self.target_net = CNN(screen_height, screen_width,
n_actions).to(self.device)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
self.optimizer = optim.RMSprop(self.policy_net.parameters())
self.loss = 0
self.memory = ReplayBuffer(memory_capacity)
def select_action(self, state):
'''choose_action [summary]
Args:
state [torch tensor]: [description]
Returns:
actions [torch tensor]: [description]
'''
sample = random.random()
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
self.actions_count += 1
if sample > self.epsilon:
with torch.no_grad():
# t.max(1) will return largest column value of each row.
# second column on max result is index of where max element was
# found, so we pick action with the larger expected reward.
q_value = self.policy_net(state) # q_value比如tensor([[-0.2522, 0.3887]])
action = q_value.max(1)[1].view(1, 1) # q_value最大对应的下标注意该action是个张量如tensor([1])
return action
else:
return torch.tensor([[random.randrange(self.n_actions)]], device=self.device, dtype=torch.long)
def update(self):
if len(self.memory) < self.batch_size:
return
transitions = self.memory.sample(self.batch_size)
# Transpose the batch (see https://stackoverflow.com/a/19343/3343043 for
# detailed explanation). This converts batch-array of Transitions
# to Transition of batch-arrays.
batch = self.memory.Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
# (a final state would've been the one after which simulation ended)
non_final_mask = torch.tensor(tuple(map(lambda s: s is not None,
batch.next_state)), device=self.device, dtype=torch.bool)
non_final_next_states = torch.cat([s for s in batch.next_state
if s is not None])
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward) # tensor([1., 1.,...,])
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
state_action_values = self.policy_net(
state_batch).gather(1, action_batch) #tensor([[ 1.1217],...,[ 0.8314]])
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = torch.zeros(self.batch_size, device=self.device)
next_state_values[non_final_mask] = self.target_net(
non_final_next_states).max(1)[0].detach()
# Compute the expected Q values
expected_state_action_values = (next_state_values * self.gamma) + reward_batch # tensor([0.9685, 0.9683,...,])
# Compute Huber loss
self.loss = F.smooth_l1_loss(
state_action_values, expected_state_action_values.unsqueeze(1)) # .unsqueeze增加一个维度
# Optimize the model
self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise youd just accumulate the gradients from all loss.backward() calls).
self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation.
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters.
if __name__ == "__main__":
dqn = DQN()