add some codes

This commit is contained in:
qiwang067
2020-07-20 23:56:20 +08:00
parent aae36f5bb8
commit f4ac39625a
41 changed files with 1799 additions and 7 deletions

98
codes/dqn/dqn.py Normal file
View File

@@ -0,0 +1,98 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:50:49
@LastEditor: John
@LastEditTime: 2020-06-14 13:56:45
@Discription:
@Environment: python 3.7.7
'''
'''off-policy
'''
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import random
import math
import numpy as np
from memory import ReplayBuffer
from model import FCN
class DQN:
def __init__(self, n_states, n_actions, gamma=0.99, epsilon_start=0.9, epsilon_end=0.05, epsilon_decay=200, memory_capacity=10000, policy_lr=0.01,batch_size=128, device="cpu"):
self.actions_count = 0
self.n_actions = n_actions
self.device = device
self.gamma = gamma
self.epsilon = 0
self.epsilon_start = epsilon_start
self.epsilon_end = epsilon_end
self.epsilon_decay = epsilon_decay
self.batch_size = batch_size
self.policy_net = FCN(n_states,n_actions).to(self.device)
self.target_net = FCN(n_states,n_actions).to(self.device)
self.target_net.load_state_dict(self.policy_net.state_dict())
self.target_net.eval() # 不启用 BatchNormalization 和 Dropout
self.optimizer = optim.Adam(self.policy_net.parameters(),lr=policy_lr)
self.loss = 0
self.memory = ReplayBuffer(memory_capacity)
def select_action(self,state):
'''选择工作
Args:
state [array]: 状态
Returns:
[array]: 动作
'''
self.epsilon = self.epsilon_end + (self.epsilon_start - self.epsilon_end) * \
math.exp(-1. * self.actions_count / self.epsilon_decay)
self.actions_count += 1
if random.random() > self.epsilon:
with torch.no_grad():
state = torch.tensor([state],device=self.device,dtype=torch.float32) # 先转为张量便于丢给神经网络,state元素数据原本为float64注意state=torch.tensor(state).unsqueeze(0)跟state=torch.tensor([state])等价
q_value = self.policy_net(state) # tensor([[-0.0798, -0.0079]], grad_fn=<AddmmBackward>)
action = q_value.max(1)[1].item()
else:
action = random.randrange(self.n_actions)
return action
def update(self):
if len(self.memory) < self.batch_size:
return
state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.memory.sample(self.batch_size)
state_batch = torch.tensor(state_batch,device=self.device,dtype=torch.float) # 例如tensor([[-4.5543e-02, -2.3910e-01, 1.8344e-02, 2.3158e-01],...,[-1.8615e-02, -2.3921e-01, -1.1791e-02, 2.3400e-01]])
action_batch = torch.tensor(action_batch,device=self.device).unsqueeze(1) # 例如tensor([[1],...,[0]])
reward_batch = torch.tensor(reward_batch,device=self.device,dtype=torch.float) # tensor([1., 1.,...,1])
next_state_batch = torch.tensor(next_state_batch,device=self.device,dtype=torch.float)
done_batch = torch.tensor(np.float32(done_batch),device=self.device).unsqueeze(1) # 将bool转为float然后转为张量
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken. These are the actions which would've been taken
# for each batch state according to policy_net
q_values = self.policy_net(state_batch).gather(1, action_batch) # 等价于self.forward
# Compute V(s_{t+1}) for all next states.
# Expected values of actions for non_final_next_states are computed based
# on the "older" target_net; selecting their best reward with max(1)[0].
# This is merged based on the mask, such that we'll have either the expected
# state value or 0 in case the state was final.
next_state_values = self.target_net(
next_state_batch).max(1)[0].detach() # tensor([ 0.0060, -0.0171,...,])
# Compute the expected Q values
expected_q_values = reward_batch + self.gamma * next_state_values * (1-done_batch[0])
# Compute Huber loss
# self.loss = nn.MSELoss(q_values, expected_q_values.unsqueeze(1))
self.loss = nn.MSELoss()(q_values,expected_q_values.unsqueeze(1))
# Optimize the model
self.optimizer.zero_grad() # zero_grad clears old gradients from the last step (otherwise youd just accumulate the gradients from all loss.backward() calls).
self.loss.backward() # loss.backward() computes the derivative of the loss w.r.t. the parameters (or anything requiring gradients) using backpropagation.
for param in self.policy_net.parameters(): # clip防止梯度爆炸
param.grad.data.clamp_(-1, 1)
self.optimizer.step() # causes the optimizer to take a step based on the gradients of the parameters.

98
codes/dqn/main.py Normal file
View File

@@ -0,0 +1,98 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:48:57
@LastEditor: John
@LastEditTime: 2020-07-20 23:02:16
@Discription:
@Environment: python 3.7.7
'''
'''未完成
'''
import gym
import torch
from dqn import DQN
from plot import plot
import argparse
def get_args():
'''模型建立好之后只需要在这里调参
'''
parser = argparse.ArgumentParser()
parser.add_argument("--gamma", default=0.99,
type=float) # q-learning中的gamma
parser.add_argument("--epsilon_start", default=0.95,
type=float) # 基于贪心选择action对应的参数epsilon
parser.add_argument("--epsilon_end", default=0.01, type=float)
parser.add_argument("--epsilon_decay", default=200, type=float)
parser.add_argument("--policy_lr", default=0.01, type=float)
parser.add_argument("--memory_capacity", default=1000,
type=int, help="capacity of Replay Memory")
parser.add_argument("--batch_size", default=32, type=int,
help="batch size of memory sampling")
parser.add_argument("--max_episodes", default=200, type=int)
parser.add_argument("--max_steps", default=200, type=int)
parser.add_argument("--target_update", default=2, type=int,
help="when(every default 10 eisodes) to update target net ")
config = parser.parse_args()
return config
if __name__ == "__main__":
cfg = get_args()
# if gpu is to be used
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
env = gym.make('CartPole-v0').unwrapped
env.seed(1)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.n
agent = DQN(n_states=n_states, n_actions=n_actions, device=device, gamma=cfg.gamma, epsilon_start=cfg.epsilon_start,
epsilon_end=cfg.epsilon_end, epsilon_decay=cfg.epsilon_decay,policy_lr=cfg.policy_lr, memory_capacity=cfg.memory_capacity, batch_size=cfg.batch_size)
rewards = []
moving_average_rewards = []
for i_episode in range(1, cfg.max_episodes+1):
# Initialize the environment and state
state = env.reset()
ep_reward = 0
for t in range(1, cfg.max_steps+1):
# Select and perform an action
action = agent.select_action(state)
next_state, reward, done, _ = env.step(action)
ep_reward += reward
# Store the transition in memory
agent.memory.push(state,action,reward,next_state,done)
# Move to the next state
state = next_state
# Perform one step of the optimization (on the target network)
agent.update()
if done:
break
# Update the target network, copying all weights and biases in DQN
if i_episode % cfg.target_update == 0:
agent.target_net.load_state_dict(agent.policy_net.state_dict())
print('Episode:', i_episode, ' Reward: %i' %
int(ep_reward), 'Explore: %.2f' % agent.epsilon)
rewards.append(ep_reward)
# 计算滑动窗口的reward
if i_episode == 1:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
import os
import numpy as np
output_path = os.path.dirname(__file__)+"/result/"
if not os.path.exists(output_path):
os.mkdir(output_path)
np.save(output_path+"rewards.npy", rewards)
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
print('Complete')
plot(rewards)
plot(moving_average_rewards, ylabel="moving_average_rewards")

35
codes/dqn/memory.py Normal file
View File

@@ -0,0 +1,35 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-10 15:27:16
@LastEditor: John
@LastEditTime: 2020-06-14 11:36:24
@Discription:
@Environment: python 3.7.7
'''
import random
import numpy as np
class ReplayBuffer:
def __init__(self, capacity):
self.capacity = capacity
self.buffer = []
self.position = 0
def push(self, state, action, reward, next_state, done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state, action, reward, next_state, done)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
batch = random.sample(self.buffer, batch_size)
state, action, reward, next_state, done = zip(*batch)
return state, action, reward, next_state, done
def __len__(self):
return len(self.buffer)

30
codes/dqn/model.py Normal file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-12 00:47:02
@LastEditor: John
@LastEditTime: 2020-06-14 11:23:04
@Discription:
@Environment: python 3.7.7
'''
import torch.nn as nn
import torch.nn.functional as F
class FCN(nn.Module):
def __init__(self, n_states=4, n_actions=18):
"""
Initialize a deep Q-learning network for testing algorithm
n_states: number of features of input.
n_actions: number of action-value to output, one-to-one correspondence to action in game.
"""
super(FCN, self).__init__()
self.fc1 = nn.Linear(n_states, 128)
self.fc2 = nn.Linear(128, 128)
self.fc3 = nn.Linear(128, n_actions)
def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
return self.fc3(x)

30
codes/dqn/plot.py Normal file
View File

@@ -0,0 +1,30 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 16:30:09
@LastEditor: John
@LastEditTime: 2020-06-14 11:38:42
@Discription:
@Environment: python 3.7.7
'''
import matplotlib.pyplot as plt
import numpy as np
import os
def plot(item,ylabel='rewards'):
plt.figure()
plt.plot(np.arange(len(item)), item)
plt.title(ylabel+' of DQN')
plt.ylabel('rewards')
plt.xlabel('episodes')
plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
plt.show()
if __name__ == "__main__":
output_path = os.path.dirname(__file__)+"/result/"
rewards=np.load(output_path+"rewards.npy", )
moving_average_rewards=np.load(output_path+"moving_average_rewards.npy",)
plot(rewards)
plot(moving_average_rewards,ylabel='moving_average_rewards')

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB