add some codes

This commit is contained in:
qiwang067
2020-07-20 23:56:20 +08:00
parent aae36f5bb8
commit f4ac39625a
41 changed files with 1799 additions and 7 deletions

89
codes/ddpg/main.py Normal file
View File

@@ -0,0 +1,89 @@
#!/usr/bin/env python
# coding=utf-8
'''
@Author: John
@Email: johnjim0816@gmail.com
@Date: 2020-06-11 20:58:21
@LastEditor: John
@LastEditTime: 2020-07-20 23:01:02
@Discription:
@Environment: python 3.7.7
'''
import torch
import gym
from ddpg import DDPG
from env import NormalizedActions
from noise import OUNoise
from plot import plot
import argparse
def get_args():
'''模型建立好之后只需要在这里调参
'''
parser = argparse.ArgumentParser()
parser.add_argument("--gamma", default=0.99, type=float) # q-learning中的gamma
parser.add_argument("--critic_lr", default=1e-3, type=float) # critic学习率
parser.add_argument("--actor_lr", default=1e-4, type=float)
parser.add_argument("--memory_capacity", default=10000, type=int,help="capacity of Replay Memory")
parser.add_argument("--batch_size", default=128, type=int,help="batch size of memory sampling")
parser.add_argument("--max_episodes", default=200, type=int)
parser.add_argument("--max_steps", default=200, type=int)
parser.add_argument("--target_update", default=4, type=int,help="when(every default 10 eisodes) to update target net ")
config = parser.parse_args()
return config
if __name__ == "__main__":
cfg = get_args()
env = NormalizedActions(gym.make("Pendulum-v0"))
# 增加action噪声
ou_noise = OUNoise(env.action_space)
n_states = env.observation_space.shape[0]
n_actions = env.action_space.shape[0]
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
agent=DDPG(n_states,n_actions,device="cpu", critic_lr=1e-3,
actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
rewards = []
moving_average_rewards = []
for i_episode in range(1,cfg.max_episodes+1):
state=env.reset()
ou_noise.reset()
ep_reward = 0
for i_step in range(1,cfg.max_steps+1):
action = agent.select_action(state)
action = ou_noise.get_action(action, i_step) # 即paper中的random process
next_state, reward, done, _ = env.step(action)
ep_reward += reward
agent.memory.push(state, action, reward, next_state, done)
agent.update()
state = next_state
if done:
break
print('Episode:', i_episode, ' Reward: %i' % int(ep_reward),)
rewards.append(ep_reward)
#
if i_episode == 1:
moving_average_rewards.append(ep_reward)
else:
moving_average_rewards.append(
0.9*moving_average_rewards[-1]+0.1*ep_reward)
print('Complete')
import os
import numpy as np
output_path = os.path.dirname(__file__)+"/result/"
if not os.path.exists(output_path):
os.mkdir(output_path)
np.save(output_path+"rewards.npy", rewards)
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
plot(rewards)
plot(moving_average_rewards,ylabel="moving_average_rewards")