add some codes
This commit is contained in:
87
codes/ddpg/ddpg.py
Normal file
87
codes/ddpg/ddpg.py
Normal file
@@ -0,0 +1,87 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-09 20:25:52
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-14 11:43:17
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.optim as optim
|
||||
|
||||
from model import Actor, Critic
|
||||
from memory import ReplayBuffer
|
||||
|
||||
|
||||
class DDPG:
|
||||
def __init__(self, n_states, n_actions, hidden_dim=30, device="cpu", critic_lr=1e-3,
|
||||
actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128):
|
||||
self.device = device
|
||||
self.critic = Critic(n_states, n_actions, hidden_dim).to(device)
|
||||
self.actor = Actor(n_states, n_actions, hidden_dim).to(device)
|
||||
self.target_critic = Critic(n_states, n_actions, hidden_dim).to(device)
|
||||
self.target_actor = Actor(n_states, n_actions, hidden_dim).to(device)
|
||||
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||||
target_param.data.copy_(param.data)
|
||||
|
||||
self.critic_optimizer = optim.Adam(
|
||||
self.critic.parameters(), lr=critic_lr)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=actor_lr)
|
||||
self.critic_criterion = nn.MSELoss()
|
||||
self.memory = ReplayBuffer(memory_capacity)
|
||||
self.batch_size = batch_size
|
||||
self.soft_tau = soft_tau
|
||||
self.gamma = gamma
|
||||
|
||||
def select_action(self, state):
|
||||
return self.actor.select_action(state)
|
||||
|
||||
def update(self):
|
||||
if len(self.memory) < self.batch_size:
|
||||
return
|
||||
state, action, reward, next_state, done = self.memory.sample(
|
||||
self.batch_size)
|
||||
# 将所有变量转为张量
|
||||
state = torch.FloatTensor(state).to(self.device)
|
||||
next_state = torch.FloatTensor(next_state).to(self.device)
|
||||
action = torch.FloatTensor(action).to(self.device)
|
||||
reward = torch.FloatTensor(reward).unsqueeze(1).to(self.device)
|
||||
|
||||
done = torch.FloatTensor(np.float32(done)).unsqueeze(1).to(self.device)
|
||||
policy_loss = self.critic(state, self.actor(state))
|
||||
policy_loss = -policy_loss.mean()
|
||||
|
||||
next_action = self.target_actor(next_state)
|
||||
target_value = self.target_critic(next_state, next_action.detach())
|
||||
expected_value = reward + (1.0 - done) * self.gamma * target_value
|
||||
expected_value = torch.clamp(expected_value, -np.inf, np.inf)
|
||||
|
||||
value = self.critic(state, action)
|
||||
|
||||
value_loss = self.critic_criterion(value, expected_value.detach())
|
||||
|
||||
self.actor_optimizer.zero_grad()
|
||||
policy_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
|
||||
self.critic_optimizer.zero_grad()
|
||||
value_loss.backward()
|
||||
self.critic_optimizer.step()
|
||||
for target_param, param in zip(self.target_critic.parameters(), self.critic.parameters()):
|
||||
target_param.data.copy_(
|
||||
target_param.data * (1.0 - self.soft_tau) +
|
||||
param.data * self.soft_tau
|
||||
)
|
||||
for target_param, param in zip(self.target_actor.parameters(), self.actor.parameters()):
|
||||
target_param.data.copy_(
|
||||
target_param.data * (1.0 - self.soft_tau) +
|
||||
param.data * self.soft_tau
|
||||
)
|
||||
31
codes/ddpg/env.py
Normal file
31
codes/ddpg/env.py
Normal file
@@ -0,0 +1,31 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:28:30
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-12 22:49:18
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import gym
|
||||
import numpy as np
|
||||
|
||||
class NormalizedActions(gym.ActionWrapper):
|
||||
|
||||
def action(self, action):
|
||||
|
||||
low_bound = self.action_space.low
|
||||
upper_bound = self.action_space.high
|
||||
action = low_bound + (action + 1.0) * 0.5 * (upper_bound - low_bound)
|
||||
action = np.clip(action, low_bound, upper_bound)
|
||||
|
||||
return action
|
||||
|
||||
def reverse_action(self, action):
|
||||
low_bound = self.action_space.low
|
||||
upper_bound = self.action_space.high
|
||||
action = 2 * (action - low_bound) / (upper_bound - low_bound) - 1
|
||||
action = np.clip(action, low_bound, upper_bound)
|
||||
return action
|
||||
89
codes/ddpg/main.py
Normal file
89
codes/ddpg/main.py
Normal file
@@ -0,0 +1,89 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:21
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-07-20 23:01:02
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import torch
|
||||
import gym
|
||||
|
||||
from ddpg import DDPG
|
||||
from env import NormalizedActions
|
||||
from noise import OUNoise
|
||||
from plot import plot
|
||||
|
||||
import argparse
|
||||
|
||||
def get_args():
|
||||
'''模型建立好之后只需要在这里调参
|
||||
'''
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--gamma", default=0.99, type=float) # q-learning中的gamma
|
||||
parser.add_argument("--critic_lr", default=1e-3, type=float) # critic学习率
|
||||
parser.add_argument("--actor_lr", default=1e-4, type=float)
|
||||
|
||||
parser.add_argument("--memory_capacity", default=10000, type=int,help="capacity of Replay Memory")
|
||||
|
||||
parser.add_argument("--batch_size", default=128, type=int,help="batch size of memory sampling")
|
||||
parser.add_argument("--max_episodes", default=200, type=int)
|
||||
parser.add_argument("--max_steps", default=200, type=int)
|
||||
parser.add_argument("--target_update", default=4, type=int,help="when(every default 10 eisodes) to update target net ")
|
||||
config = parser.parse_args()
|
||||
|
||||
return config
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
cfg = get_args()
|
||||
env = NormalizedActions(gym.make("Pendulum-v0"))
|
||||
|
||||
# 增加action噪声
|
||||
ou_noise = OUNoise(env.action_space)
|
||||
|
||||
n_states = env.observation_space.shape[0]
|
||||
n_actions = env.action_space.shape[0]
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
agent=DDPG(n_states,n_actions,device="cpu", critic_lr=1e-3,
|
||||
actor_lr=1e-4, gamma=0.99, soft_tau=1e-2, memory_capacity=100000, batch_size=128)
|
||||
|
||||
rewards = []
|
||||
moving_average_rewards = []
|
||||
for i_episode in range(1,cfg.max_episodes+1):
|
||||
state=env.reset()
|
||||
ou_noise.reset()
|
||||
ep_reward = 0
|
||||
for i_step in range(1,cfg.max_steps+1):
|
||||
action = agent.select_action(state)
|
||||
action = ou_noise.get_action(action, i_step) # 即paper中的random process
|
||||
next_state, reward, done, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, reward, next_state, done)
|
||||
agent.update()
|
||||
state = next_state
|
||||
if done:
|
||||
break
|
||||
print('Episode:', i_episode, ' Reward: %i' % int(ep_reward),)
|
||||
rewards.append(ep_reward)
|
||||
#
|
||||
if i_episode == 1:
|
||||
moving_average_rewards.append(ep_reward)
|
||||
else:
|
||||
moving_average_rewards.append(
|
||||
0.9*moving_average_rewards[-1]+0.1*ep_reward)
|
||||
print('Complete!')
|
||||
import os
|
||||
import numpy as np
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
if not os.path.exists(output_path):
|
||||
os.mkdir(output_path)
|
||||
np.save(output_path+"rewards.npy", rewards)
|
||||
np.save(output_path+"moving_average_rewards.npy", moving_average_rewards)
|
||||
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards,ylabel="moving_average_rewards")
|
||||
34
codes/ddpg/memory.py
Normal file
34
codes/ddpg/memory.py
Normal file
@@ -0,0 +1,34 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:27:16
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-13 00:29:45
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
class ReplayBuffer:
|
||||
|
||||
def __init__(self, capacity):
|
||||
self.capacity = capacity
|
||||
self.buffer = []
|
||||
self.position = 0
|
||||
|
||||
def push(self, state, action, reward, next_state, done):
|
||||
if len(self.buffer) < self.capacity:
|
||||
self.buffer.append(None)
|
||||
self.buffer[self.position] = (state, action, reward, next_state, done)
|
||||
self.position = (self.position + 1) % self.capacity
|
||||
|
||||
def sample(self, batch_size):
|
||||
batch = random.sample(self.buffer, batch_size)
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch = map(np.stack, zip(*batch))
|
||||
return state_batch, action_batch, reward_batch, next_state_batch, done_batch
|
||||
|
||||
def __len__(self):
|
||||
return len(self.buffer)
|
||||
56
codes/ddpg/model.py
Normal file
56
codes/ddpg/model.py
Normal file
@@ -0,0 +1,56 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-10 15:03:59
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-14 11:42:45
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||||
super(Critic, self).__init__()
|
||||
|
||||
self.linear1 = nn.Linear(n_obs + n_actions, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, 1)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, state, action):
|
||||
x = torch.cat([state, action], 1)
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = self.linear3(x)
|
||||
return x
|
||||
|
||||
class Actor(nn.Module):
|
||||
def __init__(self, n_obs, n_actions, hidden_size, init_w=3e-3):
|
||||
super(Actor, self).__init__()
|
||||
self.linear1 = nn.Linear(n_obs, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size, hidden_size)
|
||||
self.linear3 = nn.Linear(hidden_size, n_actions)
|
||||
|
||||
self.linear3.weight.data.uniform_(-init_w, init_w)
|
||||
self.linear3.bias.data.uniform_(-init_w, init_w)
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(self.linear1(x))
|
||||
x = F.relu(self.linear2(x))
|
||||
x = F.tanh(self.linear3(x))
|
||||
return x
|
||||
|
||||
def select_action(self, state):
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
state = torch.FloatTensor(state).unsqueeze(0).to(device)
|
||||
# print(state)
|
||||
action = self.forward(state)
|
||||
return action.detach().cpu().numpy()[0, 0]
|
||||
39
codes/ddpg/noise.py
Normal file
39
codes/ddpg/noise.py
Normal file
@@ -0,0 +1,39 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 20:58:59
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-11 20:59:20
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import numpy as np
|
||||
|
||||
class OUNoise(object):
|
||||
def __init__(self, action_space, mu=0.0, theta=0.15, max_sigma=0.3, min_sigma=0.3, decay_period=100000):
|
||||
self.mu = mu
|
||||
self.theta = theta
|
||||
self.sigma = max_sigma
|
||||
self.max_sigma = max_sigma
|
||||
self.min_sigma = min_sigma
|
||||
self.decay_period = decay_period
|
||||
self.n_actions = action_space.shape[0]
|
||||
self.low = action_space.low
|
||||
self.high = action_space.high
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.obs = np.ones(self.n_actions) * self.mu
|
||||
|
||||
def evolve_obs(self):
|
||||
x = self.obs
|
||||
dx = self.theta * (self.mu - x) + self.sigma * np.random.randn(self.n_actions)
|
||||
self.obs = x + dx
|
||||
return self.obs
|
||||
|
||||
def get_action(self, action, t=0):
|
||||
ou_obs = self.evolve_obs()
|
||||
self.sigma = self.max_sigma - (self.max_sigma - self.min_sigma) * min(1.0, t / self.decay_period)
|
||||
return np.clip(action + ou_obs, self.low, self.high)
|
||||
47
codes/ddpg/plot.py
Normal file
47
codes/ddpg/plot.py
Normal file
@@ -0,0 +1,47 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
@Author: John
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-11 16:30:09
|
||||
@LastEditor: John
|
||||
@LastEditTime: 2020-06-12 11:34:52
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
import seaborn as sns; sns.set()
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
# def plot(item,ylabel='rewards'):
|
||||
# plt.figure()
|
||||
# plt.plot(np.arange(len(item)), item)
|
||||
# plt.title(ylabel+' of DDPG')
|
||||
# plt.ylabel(ylabel)
|
||||
# plt.xlabel('episodes')
|
||||
# plt.savefig(os.path.dirname(__file__)+"/result/"+ylabel+".png")
|
||||
# plt.show()
|
||||
|
||||
def plot(item,ylabel='rewards'):
|
||||
df = pd.DataFrame(dict(time=np.arange(500),
|
||||
value=np.random.randn(500).cumsum()))
|
||||
g = sns.relplot(x="time", y="value", kind="line", data=df)
|
||||
g.fig.autofmt_xdate()
|
||||
# time = range(len(item))
|
||||
# sns.set(style="darkgrid", font_scale=1.5)
|
||||
# sns.lineplot(time=time, data=item, color="r", condition="behavior_cloning")
|
||||
# # sns.tsplot(time=time, data=x2, color="b", condition="dagger")
|
||||
# plt.ylabel("Reward")
|
||||
# plt.xlabel("Iteration Number")
|
||||
# plt.title("Imitation Learning")
|
||||
|
||||
plt.show()
|
||||
if __name__ == "__main__":
|
||||
|
||||
output_path = os.path.dirname(__file__)+"/result/"
|
||||
rewards=np.load(output_path+"rewards.npy", )
|
||||
moving_average_rewards=np.load(output_path+"moving_average_rewards.npy",)
|
||||
plot(rewards)
|
||||
plot(moving_average_rewards,ylabel='moving_average_rewards')
|
||||
BIN
codes/ddpg/result/moving_average_rewards.npy
Normal file
BIN
codes/ddpg/result/moving_average_rewards.npy
Normal file
Binary file not shown.
BIN
codes/ddpg/result/moving_average_rewards.png
Normal file
BIN
codes/ddpg/result/moving_average_rewards.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 32 KiB |
BIN
codes/ddpg/result/rewards.npy
Normal file
BIN
codes/ddpg/result/rewards.npy
Normal file
Binary file not shown.
BIN
codes/ddpg/result/rewards.png
Normal file
BIN
codes/ddpg/result/rewards.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 47 KiB |
Reference in New Issue
Block a user