diff --git a/docs/chapter12/img/image-20200820174814084.png b/docs/chapter12/img/image-20200820174814084.png new file mode 100644 index 0000000..4c9e3dc Binary files /dev/null and b/docs/chapter12/img/image-20200820174814084.png differ diff --git a/docs/chapter12/img/moving_average_rewards-8929361.png b/docs/chapter12/img/moving_average_rewards-8929361.png new file mode 100644 index 0000000..a80fc99 Binary files /dev/null and b/docs/chapter12/img/moving_average_rewards-8929361.png differ diff --git a/docs/chapter12/project3.md b/docs/chapter12/project3.md new file mode 100644 index 0000000..b106822 --- /dev/null +++ b/docs/chapter12/project3.md @@ -0,0 +1,76 @@ +# 使用Policy-Based方法实现Pendulum-v0 + +使用Policy-Based方法比如DDPG等实现Pendulum-v0环境 + +## Pendulum-v0 + +![image-20200820174814084](img/image-20200820174814084.png) + +钟摆以随机位置开始,目标是将其摆动,使其保持向上直立。动作空间是连续的,值的区间为[-2,2]。每个step给的reward最低为-16.27,最高为0。 + +环境建立如下: + +```python +env = gym.make('Pendulum-v0') +env.seed(1) # 设置env随机种子 +n_states = env.observation_space.shape[0] # 获取总的状态数 +``` + +## 强化学习基本接口 + +```python +rewards = [] # 记录总的rewards +moving_average_rewards = [] # 记录总的经滑动平均处理后的rewards +ep_steps = [] +for i_episode in range(1, cfg.max_episodes+1): # cfg.max_episodes为最大训练的episode数 + state = env.reset() # reset环境状态 + ep_reward = 0 + for i_step in range(1, cfg.max_steps+1): # cfg.max_steps为每个episode的补偿 + action = agent.select_action(state) # 根据当前环境state选择action + next_state, reward, done, _ = env.step(action) # 更新环境参数 + ep_reward += reward + agent.memory.push(state, action, reward, next_state, done) # 将state等这些transition存入memory + state = next_state # 跳转到下一个状态 + agent.update() # 每步更新网络 + if done: + break + # 更新target network,复制DQN中的所有weights and biases + if i_episode % cfg.target_update == 0: # cfg.target_update为target_net的更新频率 + agent.target_net.load_state_dict(agent.policy_net.state_dict()) + print('Episode:', i_episode, ' Reward: %i' % + int(ep_reward), 'n_steps:', i_step, 'done: ', done,' Explore: %.2f' % agent.epsilon) + ep_steps.append(i_step) + rewards.append(ep_reward) + # 计算滑动窗口的reward + if i_episode == 1: + moving_average_rewards.append(ep_reward) + else: + moving_average_rewards.append( + 0.9*moving_average_rewards[-1]+0.1*ep_reward) +``` + +## 任务要求 + +训练并绘制reward以及滑动平均后的reward随epiosde的变化曲线图并记录超参数写成报告,图示如下: + +![moving_average_rewards](img/moving_average_rewards-8929361.png) + +### 注意 + +1. 本次环境action范围在[-2,2]之间,而神经网络中输出的激活函数tanh在[0,1],可以使用NormalizedActions(gym.ActionWrapper)的方法解决 +2. 由于本次环境为惯性系统,建议增加Ornstein-Uhlenbeck噪声提高探索率,可参考[知乎文章](https://zhuanlan.zhihu.com/p/96720878) +3. 推荐多次试验保存rewards,然后使用searborn绘制,可参考[CSDN](https://blog.csdn.net/JohnJim0/article/details/106715402) + +### 代码清单 + +**main.py**:保存强化学习基本接口,以及相应的超参数,可使用argparse + +**model.py**:保存神经网络,比如全链接网络 + +**ddpg.py**: 保存算法模型,主要包含select_action和update两个函数 + +**memory.py**:保存Replay Buffer + +**plot.py**:保存相关绘制函数 + +**noise.py**:保存噪声相关 \ No newline at end of file