update
This commit is contained in:
97
codes/PPO/task1.py
Normal file
97
codes/PPO/task1.py
Normal file
@@ -0,0 +1,97 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-22 16:18:10
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-11 01:25:43
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import datetime
|
||||
from PPO.agent import PPO
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
class PPOConfig:
|
||||
def __init__(self) -> None:
|
||||
self.env = 'LunarLander-v2'
|
||||
self.algo = 'PPO'
|
||||
self.batch_size = 128
|
||||
self.gamma=0.95
|
||||
self.n_epochs = 4
|
||||
self.actor_lr = 0.002
|
||||
self.critic_lr = 0.005
|
||||
self.gae_lambda=0.95
|
||||
self.policy_clip=0.2
|
||||
self.hidden_dim = 256
|
||||
self.update_fre = 20 # frequency of agent update
|
||||
self.train_eps = 300 # max training episodes
|
||||
self.train_steps = 1000
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||
|
||||
def train(cfg,env,agent):
|
||||
best_reward = env.reward_range[0]
|
||||
rewards= []
|
||||
ma_rewards = [] # moving average rewards
|
||||
avg_reward = 0
|
||||
running_steps = 0
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
# for i_step in range(cfg.train_steps):
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
running_steps += 1
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, prob, val, reward, done)
|
||||
if running_steps % cfg.update_fre == 0:
|
||||
agent.update()
|
||||
state = state_
|
||||
# if done:
|
||||
# break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
avg_reward = np.mean(rewards[-100:])
|
||||
if avg_reward > best_reward:
|
||||
best_reward = avg_reward
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
print('Episode:{}/{}, Reward:{:.1f}, avg reward:{:.1f}, Loss:{}'.format(i_episode+1,cfg.train_eps,ep_reward,avg_reward,agent.loss))
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfg = PPOConfig()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(1)
|
||||
state_dim=env.observation_space.shape[0]
|
||||
action_dim=env.action_space.n
|
||||
agent = PPO(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
Reference in New Issue
Block a user