update
This commit is contained in:
@@ -5,12 +5,14 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-22 16:18:10
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:52:52
|
||||
LastEditTime: 2021-04-11 01:24:41
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # add current terminal path to sys.path
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -33,15 +35,18 @@ if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
|
||||
class PPOConfig:
|
||||
def __init__(self) -> None:
|
||||
self.env = 'CartPole-v0'
|
||||
self.algo = 'PPO'
|
||||
self.batch_size = 5
|
||||
self.gamma=0.99
|
||||
self.n_epochs = 4
|
||||
self.lr = 0.0003
|
||||
self.actor_lr = 0.0003
|
||||
self.critic_lr = 0.0003
|
||||
self.gae_lambda=0.95
|
||||
self.policy_clip=0.2
|
||||
self.hidden_dim = 256
|
||||
self.update_fre = 20 # frequency of agent update
|
||||
self.train_eps = 250 # max training episodes
|
||||
self.train_eps = 300 # max training episodes
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||
|
||||
def train(cfg,env,agent):
|
||||
@@ -70,7 +75,8 @@ def train(cfg,env,agent):
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
avg_reward = np.mean(rewards[-100:])
|
||||
if avg_reward > best_reward:
|
||||
if avg_rewardself.actor_lr = 0.002
|
||||
self.critic_lr = 0.005 > best_reward:
|
||||
best_reward = avg_reward
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
print('Episode:{}/{}, Reward:{:.1f}, avg reward:{:.1f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,avg_reward,done))
|
||||
@@ -78,7 +84,7 @@ def train(cfg,env,agent):
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfg = PPOConfig()
|
||||
env = gym.make('CartPole-v0')
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(1)
|
||||
state_dim=env.observation_space.shape[0]
|
||||
action_dim=env.action_space.n
|
||||
|
||||
Reference in New Issue
Block a user