This commit is contained in:
JohnJim0816
2021-04-16 14:59:23 +08:00
parent 312b57fdff
commit e4690ac89f
71 changed files with 805 additions and 153 deletions

View File

@@ -5,7 +5,7 @@ Author: John
Email: johnjim0816@gmail.com
Date: 2021-03-23 15:17:42
LastEditor: John
LastEditTime: 2021-03-23 15:52:34
LastEditTime: 2021-04-11 01:24:24
Discription:
Environment:
'''
@@ -17,16 +17,18 @@ from PPO.model import Actor,Critic
from PPO.memory import PPOMemory
class PPO:
def __init__(self, state_dim, action_dim,cfg):
self.env = cfg.env
self.gamma = cfg.gamma
self.policy_clip = cfg.policy_clip
self.n_epochs = cfg.n_epochs
self.gae_lambda = cfg.gae_lambda
self.device = cfg.device
self.actor = Actor(state_dim, action_dim).to(self.device)
self.critic = Critic(state_dim).to(self.device)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.lr)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.lr)
self.actor = Actor(state_dim, action_dim,cfg.hidden_dim).to(self.device)
self.critic = Critic(state_dim,cfg.hidden_dim).to(self.device)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
self.memory = PPOMemory(cfg.batch_size)
self.loss = 0
def choose_action(self, observation):
state = torch.tensor([observation], dtype=torch.float).to(self.device)
@@ -74,6 +76,7 @@ class PPO:
critic_loss = (returns-critic_value)**2
critic_loss = critic_loss.mean()
total_loss = actor_loss + 0.5*critic_loss
self.loss = total_loss
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
total_loss.backward()
@@ -81,13 +84,13 @@ class PPO:
self.critic_optimizer.step()
self.memory.clear()
def save(self,path):
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
actor_checkpoint = os.path.join(path, self.env+'_actor.pt')
critic_checkpoint= os.path.join(path, self.env+'_critic.pt')
torch.save(self.actor.state_dict(), actor_checkpoint)
torch.save(self.critic.state_dict(), critic_checkpoint)
def load(self,path):
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
actor_checkpoint = os.path.join(path, self.env+'_actor.pt')
critic_checkpoint= os.path.join(path, self.env+'_critic.pt')
self.actor.load_state_dict(torch.load(actor_checkpoint))
self.critic.load_state_dict(torch.load(critic_checkpoint))