update
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:17:42
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:52:34
|
||||
LastEditTime: 2021-04-11 01:24:24
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -17,16 +17,18 @@ from PPO.model import Actor,Critic
|
||||
from PPO.memory import PPOMemory
|
||||
class PPO:
|
||||
def __init__(self, state_dim, action_dim,cfg):
|
||||
self.env = cfg.env
|
||||
self.gamma = cfg.gamma
|
||||
self.policy_clip = cfg.policy_clip
|
||||
self.n_epochs = cfg.n_epochs
|
||||
self.gae_lambda = cfg.gae_lambda
|
||||
self.device = cfg.device
|
||||
self.actor = Actor(state_dim, action_dim).to(self.device)
|
||||
self.critic = Critic(state_dim).to(self.device)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.lr)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.lr)
|
||||
self.actor = Actor(state_dim, action_dim,cfg.hidden_dim).to(self.device)
|
||||
self.critic = Critic(state_dim,cfg.hidden_dim).to(self.device)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
|
||||
self.memory = PPOMemory(cfg.batch_size)
|
||||
self.loss = 0
|
||||
|
||||
def choose_action(self, observation):
|
||||
state = torch.tensor([observation], dtype=torch.float).to(self.device)
|
||||
@@ -74,6 +76,7 @@ class PPO:
|
||||
critic_loss = (returns-critic_value)**2
|
||||
critic_loss = critic_loss.mean()
|
||||
total_loss = actor_loss + 0.5*critic_loss
|
||||
self.loss = total_loss
|
||||
self.actor_optimizer.zero_grad()
|
||||
self.critic_optimizer.zero_grad()
|
||||
total_loss.backward()
|
||||
@@ -81,13 +84,13 @@ class PPO:
|
||||
self.critic_optimizer.step()
|
||||
self.memory.clear()
|
||||
def save(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
|
||||
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
|
||||
actor_checkpoint = os.path.join(path, self.env+'_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, self.env+'_critic.pt')
|
||||
torch.save(self.actor.state_dict(), actor_checkpoint)
|
||||
torch.save(self.critic.state_dict(), critic_checkpoint)
|
||||
def load(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
|
||||
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
|
||||
actor_checkpoint = os.path.join(path, self.env+'_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, self.env+'_critic.pt')
|
||||
self.actor.load_state_dict(torch.load(actor_checkpoint))
|
||||
self.critic.load_state_dict(torch.load(critic_checkpoint))
|
||||
|
||||
|
||||
Reference in New Issue
Block a user