update
This commit is contained in:
141
codes/PPO/README.md
Normal file
141
codes/PPO/README.md
Normal file
@@ -0,0 +1,141 @@
|
||||
## 原理简介
|
||||
PPO是一种off-policy算法,具有较好的性能,其前身是TRPO算法,也是policy gradient算法的一种,它是现在 OpenAI 默认的强化学习算法,具体原理可参考[PPO算法讲解](https://datawhalechina.github.io/easy-rl/#/chapter5/chapter5)。PPO算法主要有两个变种,一个是结合KL penalty的,一个是用了clip方法,本文实现的是后者即```PPO-clip```。
|
||||
## 伪代码
|
||||
要实现必先了解伪代码,伪代码如下:
|
||||

|
||||
这是谷歌找到的一张比较适合的图,本人比较懒就没有修改,上面的```k```就是第```k```个episode,第六步是用随机梯度下降的方法优化,这里的损失函数(即```argmax```后面的部分)可能有点难理解,可参考[PPO paper](https://arxiv.org/abs/1707.06347),如下:
|
||||

|
||||
第七步就是一个平方损失函数,即实际回报与期望回报的差平方。
|
||||
## 代码实战
|
||||
[点击查看完整代码](https://github.com/JohnJim0816/rl-tutorials/tree/master/PPO)
|
||||
### PPOmemory
|
||||
首先第三步需要搜集一条轨迹信息,我们可以定义一个```PPOmemory```来存储相关信息:
|
||||
```python
|
||||
class PPOMemory:
|
||||
def __init__(self, batch_size):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.vals = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.batch_size = batch_size
|
||||
def sample(self):
|
||||
batch_step = np.arange(0, len(self.states), self.batch_size)
|
||||
indices = np.arange(len(self.states), dtype=np.int64)
|
||||
np.random.shuffle(indices)
|
||||
batches = [indices[i:i+self.batch_size] for i in batch_step]
|
||||
return np.array(self.states),\
|
||||
np.array(self.actions),\
|
||||
np.array(self.probs),\
|
||||
np.array(self.vals),\
|
||||
np.array(self.rewards),\
|
||||
np.array(self.dones),\
|
||||
batches
|
||||
|
||||
def push(self, state, action, probs, vals, reward, done):
|
||||
self.states.append(state)
|
||||
self.actions.append(action)
|
||||
self.probs.append(probs)
|
||||
self.vals.append(vals)
|
||||
self.rewards.append(reward)
|
||||
self.dones.append(done)
|
||||
|
||||
def clear(self):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.dones = []
|
||||
self.vals = []
|
||||
```
|
||||
这里的push函数就是将得到的相关量放入memory中,sample就是随机采样出来,方便第六步的随机梯度下降。
|
||||
### PPO model
|
||||
model就是actor和critic两个网络了:
|
||||
```python
|
||||
import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
class Actor(nn.Module):
|
||||
def __init__(self,state_dim, action_dim,
|
||||
hidden_dim=256):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, action_dim),
|
||||
nn.Softmax(dim=-1)
|
||||
)
|
||||
def forward(self, state):
|
||||
dist = self.actor(state)
|
||||
dist = Categorical(dist)
|
||||
return dist
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, state_dim,hidden_dim=256):
|
||||
super(Critic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
def forward(self, state):
|
||||
value = self.critic(state)
|
||||
return value
|
||||
```
|
||||
这里Actor就是得到一个概率分布(Categorica,也可以是别的分布,可以搜索torch distributionsl),critc根据当前状态得到一个值,这里的输入维度可以是```state_dim+action_dim```,即将action信息也纳入critic网络中,这样会更好一些,感兴趣的小伙伴可以试试。
|
||||
|
||||
### PPO update
|
||||
定义一个update函数主要实现伪代码中的第六步和第七步:
|
||||
```python
|
||||
def update(self):
|
||||
for _ in range(self.n_epochs):
|
||||
state_arr, action_arr, old_prob_arr, vals_arr,\
|
||||
reward_arr, dones_arr, batches = \
|
||||
self.memory.sample()
|
||||
values = vals_arr
|
||||
### compute advantage ###
|
||||
advantage = np.zeros(len(reward_arr), dtype=np.float32)
|
||||
for t in range(len(reward_arr)-1):
|
||||
discount = 1
|
||||
a_t = 0
|
||||
for k in range(t, len(reward_arr)-1):
|
||||
a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
|
||||
(1-int(dones_arr[k])) - values[k])
|
||||
discount *= self.gamma*self.gae_lambda
|
||||
advantage[t] = a_t
|
||||
advantage = torch.tensor(advantage).to(self.device)
|
||||
### SGD ###
|
||||
values = torch.tensor(values).to(self.device)
|
||||
for batch in batches:
|
||||
states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device)
|
||||
old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
|
||||
actions = torch.tensor(action_arr[batch]).to(self.device)
|
||||
dist = self.actor(states)
|
||||
critic_value = self.critic(states)
|
||||
critic_value = torch.squeeze(critic_value)
|
||||
new_probs = dist.log_prob(actions)
|
||||
prob_ratio = new_probs.exp() / old_probs.exp()
|
||||
weighted_probs = advantage[batch] * prob_ratio
|
||||
weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip,
|
||||
1+self.policy_clip)*advantage[batch]
|
||||
actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean()
|
||||
returns = advantage[batch] + values[batch]
|
||||
critic_loss = (returns-critic_value)**2
|
||||
critic_loss = critic_loss.mean()
|
||||
total_loss = actor_loss + 0.5*critic_loss
|
||||
self.actor_optimizer.zero_grad()
|
||||
self.critic_optimizer.zero_grad()
|
||||
total_loss.backward()
|
||||
self.actor_optimizer.step()
|
||||
self.critic_optimizer.step()
|
||||
self.memory.clear()
|
||||
```
|
||||
该部分首先从memory中提取搜集到的轨迹信息,然后计算gae,即advantage,接着使用随机梯度下降更新网络,最后清除memory以便搜集下一条轨迹信息。
|
||||
|
||||
最后实现效果如下:
|
||||

|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:17:42
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:52:34
|
||||
LastEditTime: 2021-04-11 01:24:24
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -17,16 +17,18 @@ from PPO.model import Actor,Critic
|
||||
from PPO.memory import PPOMemory
|
||||
class PPO:
|
||||
def __init__(self, state_dim, action_dim,cfg):
|
||||
self.env = cfg.env
|
||||
self.gamma = cfg.gamma
|
||||
self.policy_clip = cfg.policy_clip
|
||||
self.n_epochs = cfg.n_epochs
|
||||
self.gae_lambda = cfg.gae_lambda
|
||||
self.device = cfg.device
|
||||
self.actor = Actor(state_dim, action_dim).to(self.device)
|
||||
self.critic = Critic(state_dim).to(self.device)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.lr)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.lr)
|
||||
self.actor = Actor(state_dim, action_dim,cfg.hidden_dim).to(self.device)
|
||||
self.critic = Critic(state_dim,cfg.hidden_dim).to(self.device)
|
||||
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=cfg.actor_lr)
|
||||
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=cfg.critic_lr)
|
||||
self.memory = PPOMemory(cfg.batch_size)
|
||||
self.loss = 0
|
||||
|
||||
def choose_action(self, observation):
|
||||
state = torch.tensor([observation], dtype=torch.float).to(self.device)
|
||||
@@ -74,6 +76,7 @@ class PPO:
|
||||
critic_loss = (returns-critic_value)**2
|
||||
critic_loss = critic_loss.mean()
|
||||
total_loss = actor_loss + 0.5*critic_loss
|
||||
self.loss = total_loss
|
||||
self.actor_optimizer.zero_grad()
|
||||
self.critic_optimizer.zero_grad()
|
||||
total_loss.backward()
|
||||
@@ -81,13 +84,13 @@ class PPO:
|
||||
self.critic_optimizer.step()
|
||||
self.memory.clear()
|
||||
def save(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
|
||||
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
|
||||
actor_checkpoint = os.path.join(path, self.env+'_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, self.env+'_critic.pt')
|
||||
torch.save(self.actor.state_dict(), actor_checkpoint)
|
||||
torch.save(self.critic.state_dict(), critic_checkpoint)
|
||||
def load(self,path):
|
||||
actor_checkpoint = os.path.join(path, 'actor_torch_ppo.pt')
|
||||
critic_checkpoint= os.path.join(path, 'critic_torch_ppo.pt')
|
||||
actor_checkpoint = os.path.join(path, self.env+'_actor.pt')
|
||||
critic_checkpoint= os.path.join(path, self.env+'_critic.pt')
|
||||
self.actor.load_state_dict(torch.load(actor_checkpoint))
|
||||
self.critic.load_state_dict(torch.load(critic_checkpoint))
|
||||
|
||||
|
||||
BIN
codes/PPO/assets/20210323154236878.png
Normal file
BIN
codes/PPO/assets/20210323154236878.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 13 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 75 KiB |
Binary file not shown.
|
After Width: | Height: | Size: 37 KiB |
@@ -5,12 +5,14 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-22 16:18:10
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:52:52
|
||||
LastEditTime: 2021-04-11 01:24:41
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
sys.path.append(os.getcwd()) # add current terminal path to sys.path
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -33,15 +35,18 @@ if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
|
||||
class PPOConfig:
|
||||
def __init__(self) -> None:
|
||||
self.env = 'CartPole-v0'
|
||||
self.algo = 'PPO'
|
||||
self.batch_size = 5
|
||||
self.gamma=0.99
|
||||
self.n_epochs = 4
|
||||
self.lr = 0.0003
|
||||
self.actor_lr = 0.0003
|
||||
self.critic_lr = 0.0003
|
||||
self.gae_lambda=0.95
|
||||
self.policy_clip=0.2
|
||||
self.hidden_dim = 256
|
||||
self.update_fre = 20 # frequency of agent update
|
||||
self.train_eps = 250 # max training episodes
|
||||
self.train_eps = 300 # max training episodes
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||
|
||||
def train(cfg,env,agent):
|
||||
@@ -70,7 +75,8 @@ def train(cfg,env,agent):
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
avg_reward = np.mean(rewards[-100:])
|
||||
if avg_reward > best_reward:
|
||||
if avg_rewardself.actor_lr = 0.002
|
||||
self.critic_lr = 0.005 > best_reward:
|
||||
best_reward = avg_reward
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
print('Episode:{}/{}, Reward:{:.1f}, avg reward:{:.1f}, Done:{}'.format(i_episode+1,cfg.train_eps,ep_reward,avg_reward,done))
|
||||
@@ -78,7 +84,7 @@ def train(cfg,env,agent):
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfg = PPOConfig()
|
||||
env = gym.make('CartPole-v0')
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(1)
|
||||
state_dim=env.observation_space.shape[0]
|
||||
action_dim=env.action_space.n
|
||||
|
||||
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-23 15:29:24
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-03-23 15:29:52
|
||||
LastEditTime: 2021-04-08 22:36:43
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -13,7 +13,7 @@ import torch.nn as nn
|
||||
from torch.distributions.categorical import Categorical
|
||||
class Actor(nn.Module):
|
||||
def __init__(self,state_dim, action_dim,
|
||||
hidden_dim=256):
|
||||
hidden_dim):
|
||||
super(Actor, self).__init__()
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
@@ -30,7 +30,7 @@ class Actor(nn.Module):
|
||||
return dist
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, state_dim,hidden_dim=256):
|
||||
def __init__(self, state_dim,hidden_dim):
|
||||
super(Critic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(state_dim, hidden_dim),
|
||||
|
||||
Binary file not shown.
Binary file not shown.
|
Before Width: | Height: | Size: 63 KiB |
Binary file not shown.
BIN
codes/PPO/results/20210411-010116/ma_rewards_train.npy
Normal file
BIN
codes/PPO/results/20210411-010116/ma_rewards_train.npy
Normal file
Binary file not shown.
BIN
codes/PPO/results/20210411-010116/rewards_curve_train.png
Normal file
BIN
codes/PPO/results/20210411-010116/rewards_curve_train.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 58 KiB |
BIN
codes/PPO/results/20210411-010116/rewards_train.npy
Normal file
BIN
codes/PPO/results/20210411-010116/rewards_train.npy
Normal file
Binary file not shown.
Binary file not shown.
Binary file not shown.
BIN
codes/PPO/saved_model/20210411-010116/CartPole-v0_actor.pt
Normal file
BIN
codes/PPO/saved_model/20210411-010116/CartPole-v0_actor.pt
Normal file
Binary file not shown.
BIN
codes/PPO/saved_model/20210411-010116/CartPole-v0_critic.pt
Normal file
BIN
codes/PPO/saved_model/20210411-010116/CartPole-v0_critic.pt
Normal file
Binary file not shown.
97
codes/PPO/task1.py
Normal file
97
codes/PPO/task1.py
Normal file
@@ -0,0 +1,97 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-22 16:18:10
|
||||
LastEditor: John
|
||||
LastEditTime: 2021-04-11 01:25:43
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(__file__)
|
||||
parent_path=os.path.dirname(curr_path)
|
||||
sys.path.append(parent_path) # add current terminal path to sys.path
|
||||
import gym
|
||||
import numpy as np
|
||||
import torch
|
||||
import datetime
|
||||
from PPO.agent import PPO
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
SAVED_MODEL_PATH = os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"+SEQUENCE+'/' # 生成保存的模型路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/saved_model/")
|
||||
if not os.path.exists(SAVED_MODEL_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(SAVED_MODEL_PATH)
|
||||
RESULT_PATH = os.path.split(os.path.abspath(__file__))[0]+"/results/"+SEQUENCE+'/' # 存储reward的路径
|
||||
if not os.path.exists(os.path.split(os.path.abspath(__file__))[0]+"/results/"): # 检测是否存在文件夹
|
||||
os.mkdir(os.path.split(os.path.abspath(__file__))[0]+"/results/")
|
||||
if not os.path.exists(RESULT_PATH): # 检测是否存在文件夹
|
||||
os.mkdir(RESULT_PATH)
|
||||
|
||||
class PPOConfig:
|
||||
def __init__(self) -> None:
|
||||
self.env = 'LunarLander-v2'
|
||||
self.algo = 'PPO'
|
||||
self.batch_size = 128
|
||||
self.gamma=0.95
|
||||
self.n_epochs = 4
|
||||
self.actor_lr = 0.002
|
||||
self.critic_lr = 0.005
|
||||
self.gae_lambda=0.95
|
||||
self.policy_clip=0.2
|
||||
self.hidden_dim = 256
|
||||
self.update_fre = 20 # frequency of agent update
|
||||
self.train_eps = 300 # max training episodes
|
||||
self.train_steps = 1000
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # check gpu
|
||||
|
||||
def train(cfg,env,agent):
|
||||
best_reward = env.reward_range[0]
|
||||
rewards= []
|
||||
ma_rewards = [] # moving average rewards
|
||||
avg_reward = 0
|
||||
running_steps = 0
|
||||
for i_episode in range(cfg.train_eps):
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
# for i_step in range(cfg.train_steps):
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
running_steps += 1
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, prob, val, reward, done)
|
||||
if running_steps % cfg.update_fre == 0:
|
||||
agent.update()
|
||||
state = state_
|
||||
# if done:
|
||||
# break
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
avg_reward = np.mean(rewards[-100:])
|
||||
if avg_reward > best_reward:
|
||||
best_reward = avg_reward
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
print('Episode:{}/{}, Reward:{:.1f}, avg reward:{:.1f}, Loss:{}'.format(i_episode+1,cfg.train_eps,ep_reward,avg_reward,agent.loss))
|
||||
return rewards,ma_rewards
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfg = PPOConfig()
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(1)
|
||||
state_dim=env.observation_space.shape[0]
|
||||
action_dim=env.action_space.n
|
||||
agent = PPO(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
Reference in New Issue
Block a user