update
This commit is contained in:
@@ -5,7 +5,7 @@
|
||||
@Email: johnjim0816@gmail.com
|
||||
@Date: 2020-06-12 00:48:57
|
||||
@LastEditor: John
|
||||
LastEditTime: 2021-04-04 00:26:47
|
||||
LastEditTime: 2021-04-13 19:03:39
|
||||
@Discription:
|
||||
@Environment: python 3.7.7
|
||||
'''
|
||||
@@ -21,15 +21,13 @@ from DQN.agent import DQN
|
||||
from common.plot import plot_rewards
|
||||
from common.utils import save_results,make_dir,del_empty_dir
|
||||
|
||||
SEQUENCE = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
SAVED_MODEL_PATH = curr_path+"/saved_model/"+SEQUENCE+'/' # path to save model
|
||||
RESULT_PATH = curr_path+"/results/"+SEQUENCE+'/' # path to save rewards
|
||||
make_dir(curr_path+"/saved_model/",curr_path+"/results/")
|
||||
del_empty_dir(curr_path+"/saved_model/",curr_path+"/results/")
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # obtain current time
|
||||
|
||||
class DQNConfig:
|
||||
def __init__(self):
|
||||
self.algo = "DQN" # name of algo
|
||||
self.env = 'CartPole-v0'
|
||||
self.result_path = curr_path+"/results/" +self.env+'/'+curr_time+'/' # path to save results
|
||||
self.gamma = 0.95
|
||||
self.epsilon_start = 1 # e-greedy策略的初始epsilon
|
||||
self.epsilon_end = 0.01
|
||||
@@ -37,7 +35,7 @@ class DQNConfig:
|
||||
self.lr = 0.0001 # learning rate
|
||||
self.memory_capacity = 10000 # Replay Memory容量
|
||||
self.batch_size = 32
|
||||
self.train_eps = 300 # 训练的episode数目
|
||||
self.train_eps = 10 # 训练的episode数目
|
||||
self.target_update = 2 # target net的更新频率
|
||||
self.eval_eps = 20 # 测试的episode数目
|
||||
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # 检测gpu
|
||||
@@ -72,14 +70,13 @@ def train(cfg,env,agent):
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = DQNConfig()
|
||||
env = gym.make('CartPole-v0')
|
||||
env = gym.make(cfg.env)
|
||||
env.seed(1)
|
||||
state_dim = env.observation_space.shape[0]
|
||||
action_dim = env.action_space.n
|
||||
agent = DQN(state_dim,action_dim,cfg)
|
||||
rewards,ma_rewards = train(cfg,env,agent)
|
||||
make_dir(SAVED_MODEL_PATH,RESULT_PATH)
|
||||
agent.save(path=SAVED_MODEL_PATH)
|
||||
save_results(rewards,ma_rewards,tag='train',path=RESULT_PATH)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=RESULT_PATH)
|
||||
del_empty_dir(SAVED_MODEL_PATH,RESULT_PATH)
|
||||
make_dir(cfg.result_path)
|
||||
agent.save(path=cfg.result_path)
|
||||
save_results(rewards,ma_rewards,tag='train',path=cfg.result_path)
|
||||
plot_rewards(rewards,ma_rewards,tag="train",algo = cfg.algo,path=cfg.result_path)
|
||||
Reference in New Issue
Block a user