update ch1

This commit is contained in:
qiwang067
2023-07-21 21:04:30 +08:00
parent 030185ac6d
commit ded3228a12

54
docs/chapter1/RL_example.py Executable file
View File

@@ -0,0 +1,54 @@
import gym
import numpy as np
class BespokeAgent:
def __init__(self, env):
pass
def decide(self, observation): # 决策
position, velocity = observation
lb = min(-0.09 * (position + 0.25) ** 2 + 0.03,
0.3 * (position + 0.9) ** 4 - 0.008)
ub = -0.07 * (position + 0.38) ** 2 + 0.07
if lb < velocity < ub:
action = 2
else:
action = 0
return action # 返回动作
def learn(self, *args): # 学习
pass
def play_montecarlo(env, agent, render=False, train=False):
episode_reward = 0. # 记录回合总奖励初始化为0
observation = env.reset() # 重置游戏环境,开始新回合
while True: # 不断循环,直到回合结束
if render: # 判断是否显示
env.render() # 显示图形界面,图形界面可以用 env.close() 语句关闭
action = agent.decide(observation)
next_observation, reward, done, _ = env.step(action) # 执行动作
episode_reward += reward # 收集回合奖励
if train: # 判断是否训练智能体
agent.learn(observation, action, reward, done) # 学习
if done: # 回合结束,跳出循环
break
observation = next_observation
return episode_reward # 返回回合总奖励
env = gym.make('MountainCar-v0')
env.seed(3) # 设置随机数种子,只是为了让结果可以精确复现,一般情况下可删去
agent = BespokeAgent(env)
print('观测空间 = {}'.format(env.observation_space))
print('动作空间 = {}'.format(env.action_space))
print('观测范围 = {} ~ {}'.format(env.observation_space.low,
env.observation_space.high))
print('动作数 = {}'.format(env.action_space.n))
episode_reward = play_montecarlo(env, agent)
print('回合奖励 = {}'.format(episode_reward))
episode_rewards = [play_montecarlo(env, agent) for _ in range(100)]
print('平均回合奖励 = {}'.format(np.mean(episode_rewards)))