更新蘑菇书附书代码

This commit is contained in:
johnjim0816
2022-12-04 20:54:36 +08:00
parent f030fe283d
commit dc8d13a13e
23 changed files with 10784 additions and 0 deletions

142
notebooks/PPO暂存.md Normal file
View File

@@ -0,0 +1,142 @@
## 原理简介
PPO是一种on-policy算法具有较好的性能其前身是TRPO算法也是policy gradient算法的一种它是现在 OpenAI 默认的强化学习算法,具体原理可参考[PPO算法讲解](https://datawhalechina.github.io/easy-rl/#/chapter5/chapter5)。PPO算法主要有两个变种一个是结合KL penalty的一个是用了clip方法本文实现的是后者即```PPO-clip```。
## 伪代码
要实现必先了解伪代码,伪代码如下:
![在这里插入图片描述](assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70.png)
这是谷歌找到的一张比较适合的图,本人比较懒就没有修改,上面的```k```就是第```k```个episode第六步是用随机梯度下降的方法优化这里的损失函数(即```argmax```后面的部分)可能有点难理解,可参考[PPO paper](https://arxiv.org/abs/1707.06347),如下:
![在这里插入图片描述](assets/20210323154236878.png)
第七步就是一个平方损失函数,即实际回报与期望回报的差平方。
## 代码实战
[点击查看完整代码](https://github.com/JohnJim0816/rl-tutorials/tree/master/PPO)
### PPOmemory
首先第三步需要搜集一条轨迹信息,我们可以定义一个```PPOmemory```来存储相关信息:
```python
class PPOMemory:
def __init__(self, batch_size):
self.states = []
self.probs = []
self.vals = []
self.actions = []
self.rewards = []
self.dones = []
self.batch_size = batch_size
def sample(self):
batch_step = np.arange(0, len(self.states), self.batch_size)
indices = np.arange(len(self.states), dtype=np.int64)
np.random.shuffle(indices)
batches = [indices[i:i+self.batch_size] for i in batch_step]
return np.array(self.states),\
np.array(self.actions),\
np.array(self.probs),\
np.array(self.vals),\
np.array(self.rewards),\
np.array(self.dones),\
batches
def push(self, state, action, probs, vals, reward, done):
self.states.append(state)
self.actions.append(action)
self.probs.append(probs)
self.vals.append(vals)
self.rewards.append(reward)
self.dones.append(done)
def clear(self):
self.states = []
self.probs = []
self.actions = []
self.rewards = []
self.dones = []
self.vals = []
```
这里的push函数就是将得到的相关量放入memory中sample就是随机采样出来方便第六步的随机梯度下降。
### PPO model
model就是actor和critic两个网络了
```python
import torch.nn as nn
from torch.distributions.categorical import Categorical
class Actor(nn.Module):
def __init__(self,n_states, n_actions,
hidden_dim=256):
super(Actor, self).__init__()
self.actor = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, n_actions),
nn.Softmax(dim=-1)
)
def forward(self, state):
dist = self.actor(state)
dist = Categorical(dist)
return dist
class Critic(nn.Module):
def __init__(self, n_states,hidden_dim=256):
super(Critic, self).__init__()
self.critic = nn.Sequential(
nn.Linear(n_states, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, 1)
)
def forward(self, state):
value = self.critic(state)
return value
```
这里Actor就是得到一个概率分布(Categorica也可以是别的分布可以搜索torch distributionsl)critc根据当前状态得到一个值这里的输入维度可以是```n_states+n_actions```即将action信息也纳入critic网络中这样会更好一些感兴趣的小伙伴可以试试。
### PPO update
定义一个update函数主要实现伪代码中的第六步和第七步
```python
def update(self):
for _ in range(self.n_epochs):
state_arr, action_arr, old_prob_arr, vals_arr,\
reward_arr, dones_arr, batches = \
self.memory.sample()
values = vals_arr
### compute advantage ###
advantage = np.zeros(len(reward_arr), dtype=np.float32)
for t in range(len(reward_arr)-1):
discount = 1
a_t = 0
for k in range(t, len(reward_arr)-1):
a_t += discount*(reward_arr[k] + self.gamma*values[k+1]*\
(1-int(dones_arr[k])) - values[k])
discount *= self.gamma*self.gae_lambda
advantage[t] = a_t
advantage = torch.tensor(advantage).to(self.device)
### SGD ###
values = torch.tensor(values).to(self.device)
for batch in batches:
states = torch.tensor(state_arr[batch], dtype=torch.float).to(self.device)
old_probs = torch.tensor(old_prob_arr[batch]).to(self.device)
actions = torch.tensor(action_arr[batch]).to(self.device)
dist = self.actor(states)
critic_value = self.critic(states)
critic_value = torch.squeeze(critic_value)
new_probs = dist.log_prob(actions)
prob_ratio = new_probs.exp() / old_probs.exp()
weighted_probs = advantage[batch] * prob_ratio
weighted_clipped_probs = torch.clamp(prob_ratio, 1-self.policy_clip,
1+self.policy_clip)*advantage[batch]
actor_loss = -torch.min(weighted_probs, weighted_clipped_probs).mean()
returns = advantage[batch] + values[batch]
critic_loss = (returns-critic_value)**2
critic_loss = critic_loss.mean()
total_loss = actor_loss + 0.5*critic_loss
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
total_loss.backward()
self.actor_optimizer.step()
self.critic_optimizer.step()
self.memory.clear()
```
该部分首先从memory中提取搜集到的轨迹信息然后计算gae即advantage接着使用随机梯度下降更新网络最后清除memory以便搜集下一条轨迹信息。
最后实现效果如下:
![在这里插入图片描述](assets/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0pvaG5KaW0w,size_16,color_FFFFFF,t_70-20210405110725113.png)