更新算法模版
This commit is contained in:
@@ -5,7 +5,7 @@ Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2021-03-12 21:14:12
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-08-29 14:24:44
|
||||
LastEditTime: 2022-10-31 23:53:06
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
@@ -35,20 +35,65 @@ class ActorSoftmax(nn.Module):
|
||||
def __init__(self, input_dim, output_dim, hidden_dim=256):
|
||||
super(ActorSoftmax, self).__init__()
|
||||
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
||||
def forward(self,state):
|
||||
dist = F.relu(self.fc1(state))
|
||||
dist = F.softmax(self.fc2(dist),dim=1)
|
||||
return dist
|
||||
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.fc3 = nn.Linear(hidden_dim, output_dim)
|
||||
def forward(self,x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
probs = F.softmax(self.fc3(x),dim=1)
|
||||
return probs
|
||||
|
||||
class ActorSoftmaxTanh(nn.Module):
|
||||
def __init__(self, input_dim, output_dim, hidden_dim=256):
|
||||
super(ActorSoftmaxTanh, self).__init__()
|
||||
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.fc3 = nn.Linear(hidden_dim, output_dim)
|
||||
def forward(self,x):
|
||||
x = F.tanh(self.fc1(x))
|
||||
x = F.tanh(self.fc2(x))
|
||||
probs = F.softmax(self.fc3(x),dim=1)
|
||||
return probs
|
||||
class ActorNormal(nn.Module):
|
||||
def __init__(self, n_states,n_actions, hidden_dim=256):
|
||||
super(ActorNormal, self).__init__()
|
||||
self.fc1 = nn.Linear(n_states, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.fc3 = nn.Linear(hidden_dim, n_actions)
|
||||
self.fc4 = nn.Linear(hidden_dim, n_actions)
|
||||
def forward(self,x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
mu = torch.tanh(self.fc3(x))
|
||||
sigma = F.softplus(self.fc4(x)) + 0.001 # avoid 0
|
||||
return mu,sigma
|
||||
# class ActorSoftmax(nn.Module):
|
||||
# def __init__(self,input_dim, output_dim,
|
||||
# hidden_dim=256):
|
||||
# super(ActorSoftmax, self).__init__()
|
||||
# self.actor = nn.Sequential(
|
||||
# nn.Linear(input_dim, hidden_dim),
|
||||
# nn.ReLU(),
|
||||
# nn.Linear(hidden_dim, hidden_dim),
|
||||
# nn.ReLU(),
|
||||
# nn.Linear(hidden_dim, output_dim),
|
||||
# nn.Softmax(dim=-1)
|
||||
# )
|
||||
# def forward(self, state):
|
||||
# probs = self.actor(state)
|
||||
# dist = Categorical(probs)
|
||||
# return dist
|
||||
class Critic(nn.Module):
|
||||
def __init__(self,input_dim,output_dim,hidden_dim=256):
|
||||
super(Critic,self).__init__()
|
||||
assert output_dim == 1 # critic must output a single value
|
||||
self.fc1 = nn.Linear(input_dim, hidden_dim)
|
||||
self.fc2 = nn.Linear(hidden_dim, output_dim)
|
||||
def forward(self,state):
|
||||
value = F.relu(self.fc1(state))
|
||||
value = self.fc2(value)
|
||||
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.fc3 = nn.Linear(hidden_dim, output_dim)
|
||||
def forward(self,x):
|
||||
x = F.relu(self.fc1(x))
|
||||
x = F.relu(self.fc2(x))
|
||||
value = self.fc3(x)
|
||||
return value
|
||||
|
||||
class ActorCriticSoftmax(nn.Module):
|
||||
@@ -72,18 +117,18 @@ class ActorCriticSoftmax(nn.Module):
|
||||
return value, policy_dist
|
||||
|
||||
class ActorCritic(nn.Module):
|
||||
def __init__(self, n_states, n_actions, hidden_dim=256):
|
||||
def __init__(self, input_dim, output_dim, hidden_dim=256):
|
||||
super(ActorCritic, self).__init__()
|
||||
self.critic = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, 1)
|
||||
)
|
||||
|
||||
self.actor = nn.Sequential(
|
||||
nn.Linear(n_states, hidden_dim),
|
||||
nn.Linear(input_dim, hidden_dim),
|
||||
nn.ReLU(),
|
||||
nn.Linear(hidden_dim, n_actions),
|
||||
nn.Linear(hidden_dim, output_dim),
|
||||
nn.Softmax(dim=1),
|
||||
)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user