更新算法模版
This commit is contained in:
106
projects/codes/QLearning/task0.py
Normal file
106
projects/codes/QLearning/task0.py
Normal file
@@ -0,0 +1,106 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
'''
|
||||
Author: John
|
||||
Email: johnjim0816@gmail.com
|
||||
Date: 2020-09-11 23:03:00
|
||||
LastEditor: John
|
||||
LastEditTime: 2022-10-30 02:04:55
|
||||
Discription:
|
||||
Environment:
|
||||
'''
|
||||
import sys,os
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
import datetime
|
||||
import argparse
|
||||
from envs.gridworld_env import FrozenLakeWapper
|
||||
from envs.wrappers import CliffWalkingWapper
|
||||
from envs.register import register_env
|
||||
from qlearning import QLearning
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.launcher import Launcher
|
||||
from config.config import GeneralConfigQLearning,AlgoConfigQLearning
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigQLearning())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigQLearning())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=False) # create env
|
||||
if cfg.env_name == 'CliffWalking-v0':
|
||||
env = CliffWalkingWapper(env)
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed=cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
agent = QLearning(cfg)
|
||||
return env,agent
|
||||
def train(self,cfg,env,agent,logger):
|
||||
logger.info("Start training!")
|
||||
logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg.train_eps):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.sample_action(state) # sample action
|
||||
next_state, reward, terminated, _ = env.step(action) # update env and return transitions
|
||||
agent.update(state, action, reward, next_state, terminated) # update agent
|
||||
state = next_state # update state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
logger.info(f'Episode: {i_ep+1}/{cfg.train_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step:d}, Epislon: {agent.epsilon:.3f}')
|
||||
logger.info("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
def test(self,cfg,env,agent,logger):
|
||||
logger.info("Start testing!")
|
||||
logger.info(f"Env: {cfg.env_name}, Algorithm: {cfg.algo_name}, Device: {cfg.device}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = [] # record steps for all episodes
|
||||
for i_ep in range(cfg.test_eps):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0
|
||||
state = env.reset() # reset and obtain initial state
|
||||
for _ in range(cfg.max_steps):
|
||||
action = agent.predict_action(state) # predict action
|
||||
next_state, reward, terminated, _ = env.step(action)
|
||||
state = next_state
|
||||
ep_reward += reward
|
||||
ep_step += 1
|
||||
if terminated:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
steps.append(ep_step)
|
||||
logger.info(f"Episode: {i_ep+1}/{cfg.test_eps}, Reward: {ep_reward:.2f}, Steps:{ep_step:d}")
|
||||
logger.info("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards,'steps':steps}
|
||||
|
||||
if __name__ == "__main__":
|
||||
main = Main()
|
||||
main.run()
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user