更新算法模版
This commit is contained in:
@@ -1,132 +1,159 @@
|
||||
import sys,os
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # 当前文件所在绝对路径
|
||||
parent_path = os.path.dirname(curr_path) # 父路径
|
||||
sys.path.append(parent_path) # 添加路径到系统路径
|
||||
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" # avoid "OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized."
|
||||
curr_path = os.path.dirname(os.path.abspath(__file__)) # current path
|
||||
parent_path = os.path.dirname(curr_path) # parent path
|
||||
sys.path.append(parent_path) # add path to system path
|
||||
|
||||
import gym
|
||||
import torch
|
||||
import numpy as np
|
||||
import datetime
|
||||
import numpy as np
|
||||
import argparse
|
||||
from common.utils import plot_rewards,save_args,save_results,make_dir
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
from common.utils import all_seed,merge_class_attrs
|
||||
from common.models import ActorSoftmax, Critic
|
||||
from common.memories import PGReplay
|
||||
from common.launcher import Launcher
|
||||
from envs.register import register_env
|
||||
from ppo2 import PPO
|
||||
from config,config import GeneralConfigPPO,AlgoConfigPPO
|
||||
class PPOMemory:
|
||||
def __init__(self, batch_size):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.vals = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.terminateds = []
|
||||
self.batch_size = batch_size
|
||||
def sample(self):
|
||||
batch_step = np.arange(0, len(self.states), self.batch_size)
|
||||
indices = np.arange(len(self.states), dtype=np.int64)
|
||||
np.random.shuffle(indices)
|
||||
batches = [indices[i:i+self.batch_size] for i in batch_step]
|
||||
return np.array(self.states),np.array(self.actions),np.array(self.probs),\
|
||||
np.array(self.vals),np.array(self.rewards),np.array(self.terminateds),batches
|
||||
|
||||
def push(self, state, action, probs, vals, reward, terminated):
|
||||
self.states.append(state)
|
||||
self.actions.append(action)
|
||||
self.probs.append(probs)
|
||||
self.vals.append(vals)
|
||||
self.rewards.append(reward)
|
||||
self.terminateds.append(terminated)
|
||||
|
||||
def get_args():
|
||||
""" Hyperparameters
|
||||
"""
|
||||
curr_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") # 获取当前时间
|
||||
parser = argparse.ArgumentParser(description="hyperparameters")
|
||||
parser.add_argument('--algo_name',default='PPO',type=str,help="name of algorithm")
|
||||
parser.add_argument('--env_name',default='CartPole-v0',type=str,help="name of environment")
|
||||
parser.add_argument('--continuous',default=False,type=bool,help="if PPO is continous") # PPO既可适用于连续动作空间,也可以适用于离散动作空间
|
||||
parser.add_argument('--train_eps',default=200,type=int,help="episodes of training")
|
||||
parser.add_argument('--test_eps',default=20,type=int,help="episodes of testing")
|
||||
parser.add_argument('--gamma',default=0.99,type=float,help="discounted factor")
|
||||
parser.add_argument('--batch_size',default=5,type=int) # mini-batch SGD中的批量大小
|
||||
parser.add_argument('--n_epochs',default=4,type=int)
|
||||
parser.add_argument('--actor_lr',default=0.0003,type=float,help="learning rate of actor net")
|
||||
parser.add_argument('--critic_lr',default=0.0003,type=float,help="learning rate of critic net")
|
||||
parser.add_argument('--gae_lambda',default=0.95,type=float)
|
||||
parser.add_argument('--policy_clip',default=0.2,type=float) # PPO-clip中的clip参数,一般是0.1~0.2左右
|
||||
parser.add_argument('--update_fre',default=20,type=int)
|
||||
parser.add_argument('--hidden_dim',default=256,type=int)
|
||||
parser.add_argument('--device',default='cpu',type=str,help="cpu or cuda")
|
||||
parser.add_argument('--result_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/results/' )
|
||||
parser.add_argument('--model_path',default=curr_path + "/outputs/" + parser.parse_args().env_name + \
|
||||
'/' + curr_time + '/models/' ) # path to save models
|
||||
parser.add_argument('--save_fig',default=True,type=bool,help="if save figure or not")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
def env_agent_config(cfg,seed = 1):
|
||||
''' 创建环境和智能体
|
||||
'''
|
||||
env = gym.make(cfg.env_name) # 创建环境
|
||||
n_states = env.observation_space.shape[0] # 状态维度
|
||||
if cfg.continuous:
|
||||
n_actions = env.action_space.shape[0] # 动作维度
|
||||
else:
|
||||
n_actions = env.action_space.n # 动作维度
|
||||
agent = PPO(n_states, n_actions, cfg) # 创建智能体
|
||||
if seed !=0: # 设置随机种子
|
||||
torch.manual_seed(seed)
|
||||
env.seed(seed)
|
||||
np.random.seed(seed)
|
||||
return env, agent
|
||||
def clear(self):
|
||||
self.states = []
|
||||
self.probs = []
|
||||
self.actions = []
|
||||
self.rewards = []
|
||||
self.terminateds = []
|
||||
self.vals = []
|
||||
|
||||
def train(cfg,env,agent):
|
||||
print('开始训练!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
steps = 0
|
||||
for i_ep in range(cfg.train_eps):
|
||||
|
||||
class Main(Launcher):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.cfgs['general_cfg'] = merge_class_attrs(self.cfgs['general_cfg'],GeneralConfigPPO())
|
||||
self.cfgs['algo_cfg'] = merge_class_attrs(self.cfgs['algo_cfg'],AlgoConfigPPO())
|
||||
def env_agent_config(self,cfg,logger):
|
||||
''' create env and agent
|
||||
'''
|
||||
register_env(cfg.env_name)
|
||||
env = gym.make(cfg.env_name,new_step_api=False) # create env
|
||||
if cfg.seed !=0: # set random seed
|
||||
all_seed(env,seed=cfg.seed)
|
||||
try: # state dimension
|
||||
n_states = env.observation_space.n # print(hasattr(env.observation_space, 'n'))
|
||||
except AttributeError:
|
||||
n_states = env.observation_space.shape[0] # print(hasattr(env.observation_space, 'shape'))
|
||||
n_actions = env.action_space.n # action dimension
|
||||
logger.info(f"n_states: {n_states}, n_actions: {n_actions}") # print info
|
||||
# update to cfg paramters
|
||||
setattr(cfg, 'n_states', n_states)
|
||||
setattr(cfg, 'n_actions', n_actions)
|
||||
models = {'Actor':ActorSoftmax(n_states,n_actions, hidden_dim = cfg.actor_hidden_dim),'Critic':Critic(n_states,1,hidden_dim=cfg.critic_hidden_dim)}
|
||||
memory = PGReplay # replay buffer
|
||||
agent = PPO(models,memory,cfg) # create agent
|
||||
return env, agent
|
||||
def train_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
steps += 1
|
||||
for _ in range(cfg.max_steps):
|
||||
action, prob, val = agent.sample_action(state)
|
||||
next_state, reward, terminated, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, prob, val, reward, done)
|
||||
if steps % cfg.update_fre == 0:
|
||||
ep_step += 1
|
||||
agent.memory.push((state, action, prob, val, reward, terminated))
|
||||
if ep_step % cfg['update_fre'] == 0:
|
||||
agent.update()
|
||||
state = state_
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
if (i_ep+1)%10 == 0:
|
||||
print(f"回合:{i_ep+1}/{cfg.train_eps},奖励:{ep_reward:.2f}")
|
||||
print('完成训练!')
|
||||
env.close()
|
||||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
return res_dic
|
||||
|
||||
def test(cfg,env,agent):
|
||||
print('开始测试!')
|
||||
print(f'环境:{cfg.env_name}, 算法:{cfg.algo_name}, 设备:{cfg.device}')
|
||||
rewards = [] # 记录所有回合的奖励
|
||||
ma_rewards = [] # 记录所有回合的滑动平均奖励
|
||||
for i_ep in range(cfg.test_eps):
|
||||
state = next_state
|
||||
if terminated:
|
||||
break
|
||||
return agent, ep_reward, ep_step
|
||||
def test_one_episode(self, env, agent, cfg):
|
||||
ep_reward = 0 # reward per episode
|
||||
ep_step = 0 # step per episode
|
||||
state = env.reset()
|
||||
done = False
|
||||
ep_reward = 0
|
||||
while not done:
|
||||
action, prob, val = agent.choose_action(state)
|
||||
state_, reward, done, _ = env.step(action)
|
||||
for _ in range(cfg.max_steps):
|
||||
action, prob, val = agent.sample_action(state)
|
||||
next_state, reward, terminated, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = state_
|
||||
rewards.append(ep_reward)
|
||||
if ma_rewards:
|
||||
ma_rewards.append(
|
||||
0.9*ma_rewards[-1]+0.1*ep_reward)
|
||||
else:
|
||||
ma_rewards.append(ep_reward)
|
||||
print('回合:{}/{}, 奖励:{}'.format(i_ep+1, cfg.test_eps, ep_reward))
|
||||
print('完成训练!')
|
||||
env.close()
|
||||
res_dic = {'rewards':rewards,'ma_rewards':ma_rewards}
|
||||
return res_dic
|
||||
ep_step += 1
|
||||
state = next_state
|
||||
if terminated:
|
||||
break
|
||||
return agent, ep_reward, ep_step
|
||||
def train(self,cfg,env,agent):
|
||||
''' train agent
|
||||
'''
|
||||
print("Start training!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
steps = 0
|
||||
for i_ep in range(cfg['train_eps']):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
while True:
|
||||
action, prob, val = agent.sample_action(state)
|
||||
next_state, reward, terminated, _ = env.step(action)
|
||||
steps += 1
|
||||
ep_reward += reward
|
||||
agent.memory.push(state, action, prob, val, reward, terminated)
|
||||
if steps % cfg['update_fre'] == 0:
|
||||
agent.update()
|
||||
state = next_state
|
||||
if terminated:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
if (i_ep+1)%10==0:
|
||||
print(f"Episode: {i_ep+1}/{cfg['train_eps']}, Reward: {ep_reward:.2f}")
|
||||
print("Finish training!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
def test(self,cfg,env,agent):
|
||||
''' test agent
|
||||
'''
|
||||
print("Start testing!")
|
||||
print(f"Env: {cfg['env_name']}, Algorithm: {cfg['algo_name']}, Device: {cfg['device']}")
|
||||
rewards = [] # record rewards for all episodes
|
||||
for i_ep in range(cfg['test_eps']):
|
||||
state = env.reset()
|
||||
ep_reward = 0
|
||||
while True:
|
||||
action, prob, val = agent.predict_action(state)
|
||||
next_state, reward, terminated, _ = env.step(action)
|
||||
ep_reward += reward
|
||||
state = next_state
|
||||
if terminated:
|
||||
break
|
||||
rewards.append(ep_reward)
|
||||
print(f"Episode: {i_ep+1}/{cfg['test_eps']}, Reward: {ep_reward:.2f}")
|
||||
print("Finish testing!")
|
||||
return {'episodes':range(len(rewards)),'rewards':rewards}
|
||||
|
||||
if __name__ == "__main__":
|
||||
cfg = get_args()
|
||||
# 训练
|
||||
env, agent = env_agent_config(cfg)
|
||||
res_dic = train(cfg, env, agent)
|
||||
make_dir(cfg.result_path, cfg.model_path)
|
||||
save_args(cfg) # 保存参数
|
||||
agent.save(path=cfg.model_path) # save model
|
||||
save_results(res_dic, tag='train',
|
||||
path=cfg.result_path)
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'], cfg, tag="train")
|
||||
# 测试
|
||||
env, agent = env_agent_config(cfg)
|
||||
agent.load(path=cfg.model_path) # 导入模型
|
||||
res_dic = test(cfg, env, agent)
|
||||
save_results(res_dic, tag='test',
|
||||
path=cfg.result_path) # 保存结果
|
||||
plot_rewards(res_dic['rewards'], res_dic['ma_rewards'],cfg, tag="test") # 画出结果
|
||||
main = Main()
|
||||
main.run()
|
||||
Reference in New Issue
Block a user